Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keith W. Oleson is active.

Publication


Featured researches published by Keith W. Oleson.


Science | 2010

Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate

Christian Beer; Markus Reichstein; Enrico Tomelleri; Philippe Ciais; Martin Jung; Nuno Carvalhais; Christian Rödenbeck; M. Altaf Arain; Dennis D. Baldocchi; Gordon B. Bonan; Alberte Bondeau; Alessandro Cescatti; Gitta Lasslop; Anders Lindroth; Mark R. Lomas; Sebastiaan Luyssaert; Hank A. Margolis; Keith W. Oleson; Olivier Roupsard; Elmar M. Veenendaal; Nicolas Viovy; Christopher M. Williams; F. Ian Woodward; Dario Papale

Carbon Cycle and Climate Change As climate change accelerates, it is important to know the likely impact of climate change on the carbon cycle (see the Perspective by Reich). Gross primary production (GPP) is a measure of the amount of CO2 removed from the atmosphere every year to fuel photosynthesis. Beer et al. (p. 834, published online 5 July) used a combination of observation and calculation to estimate that the total GPP by terrestrial plants is around 122 billion tons per year; in comparison, burning fossil fuels emits about 7 billion tons annually. Thirty-two percent of this uptake occurs in tropical forests, and precipitation controls carbon uptake in more than 40% of vegetated land. The temperature sensitivity (Q10) of ecosystem respiratory processes is a key determinant of the interaction between climate and the carbon cycle. Mahecha et al. (p. 838, published online 5 July) now show that the Q10 of ecosystem respiration is invariant with respect to mean annual temperature, independent of the analyzed ecosystem type, with a global mean value for Q10 of 1.6. This level of temperature sensitivity suggests a less-pronounced climate sensitivity of the carbon cycle than assumed by recent climate models. A combination of data and models provides an estimate of how much photosynthesis by all the world’s plants occurs each year. Terrestrial gross primary production (GPP) is the largest global CO2 flux driving several ecosystem functions. We provide an observation-based estimate of this flux at 123 ± 8 petagrams of carbon per year (Pg C year−1) using eddy covariance flux data and various diagnostic models. Tropical forests and savannahs account for 60%. GPP over 40% of the vegetated land is associated with precipitation. State-of-the-art process-oriented biosphere models used for climate predictions exhibit a large between-model variation of GPP’s latitudinal patterns and show higher spatial correlations between GPP and precipitation, suggesting the existence of missing processes or feedback mechanisms which attenuate the vegetation response to climate. Our estimates of spatially distributed GPP and its covariation with climate can help improve coupled climate–carbon cycle process models.


Nature | 2010

Recent decline in the global land evapotranspiration trend due to limited moisture supply

Martin Jung; Markus Reichstein; Philippe Ciais; Sonia I. Seneviratne; Justin Sheffield; Michael L. Goulden; Gordon B. Bonan; Alessandro Cescatti; Jiquan Chen; Richard de Jeu; A. Johannes Dolman; Werner Eugster; Dieter Gerten; Damiano Gianelle; Nadine Gobron; Jens Heinke; John S. Kimball; Beverly E. Law; Leonardo Montagnani; Qiaozhen Mu; Brigitte Mueller; Keith W. Oleson; Dario Papale; Andrew D. Richardson; Olivier Roupsard; Steve Running; Enrico Tomelleri; Nicolas Viovy; Ulrich Weber; Christopher A. Williams

More than half of the solar energy absorbed by land surfaces is currently used to evaporate water. Climate change is expected to intensify the hydrological cycle and to alter evapotranspiration, with implications for ecosystem services and feedback to regional and global climate. Evapotranspiration changes may already be under way, but direct observational constraints are lacking at the global scale. Until such evidence is available, changes in the water cycle on land—a key diagnostic criterion of the effects of climate change and variability—remain uncertain. Here we provide a data-driven estimate of global land evapotranspiration from 1982 to 2008, compiled using a global monitoring network, meteorological and remote-sensing observations, and a machine-learning algorithm. In addition, we have assessed evapotranspiration variations over the same time period using an ensemble of process-based land-surface models. Our results suggest that global annual evapotranspiration increased on average by 7.1 ± 1.0 millimetres per year per decade from 1982 to 1997. After that, coincident with the last major El Niño event in 1998, the global evapotranspiration increase seems to have ceased until 2008. This change was driven primarily by moisture limitation in the Southern Hemisphere, particularly Africa and Australia. In these regions, microwave satellite observations indicate that soil moisture decreased from 1998 to 2008. Hence, increasing soil-moisture limitations on evapotranspiration largely explain the recent decline of the global land-evapotranspiration trend. Whether the changing behaviour of evapotranspiration is representative of natural climate variability or reflects a more permanent reorganization of the land water cycle is a key question for earth system science.


Bulletin of the American Meteorological Society | 2003

The common land model

Yongjiu Dai; Xubin Zeng; Robert E. Dickinson; Ian T. Baker; Gordon B. Bonan; Michael G. Bosilovich; A. Scott Denning; Paul A. Dirmeyer; Paul R. Houser; Guo Yue Niu; Keith W. Oleson; C. Adam Schlosser; Zong-Liang Yang

The Common Land Model (CLM) was developed for community use by a grassroots collaboration of scientists who have an interest in making a general land model available for public use and further development. The major model characteristics include enough unevenly spaced layers to adequately represent soil temperature and soil moisture, and a multilayer parameterization of snow processes; an explicit treatment of the mass of liquid water and ice water and their phase change within the snow and soil system; a runoff parameterization following the TOPMODEL concept; a canopy photo synthesis-conductance model that describes the simultaneous transfer of CO2 and water vapor into and out of vegetation; and a tiled treatment of the subgrid fraction of energy and water balance. CLM has been extensively evaluated in offline mode and coupling runs with the NCAR Community Climate Model (CCM3). The results of two offline runs, presented as examples, are compared with observations and with the simulation of three other la...


Science | 2005

The Importance of Land-Cover Change in Simulating Future Climates

Johannes J. Feddema; Keith W. Oleson; Gordon B. Bonan; Linda O. Mearns; Lawrence Buja; Gerald A. Meehl; Warren M. Washington

Adding the effects of changes in land cover to the A2 and B1 transient climate simulations described in the Special Report on Emissions Scenarios (SRES) by the Intergovernmental Panel on Climate Change leads to significantly different regional climates in 2100 as compared with climates resulting from atmospheric SRES forcings alone. Agricultural expansion in the A2 scenario results in significant additional warming over the Amazon and cooling of the upper air column and nearby oceans. These and other influences on the Hadley and monsoon circulations affect extratropical climates. Agricultural expansion in the mid-latitudes produces cooling and decreases in the mean daily temperature range over many areas. The A2 scenario results in more significant change, often of opposite sign, than does the B1 scenario.


Journal of Climate | 2002

The Land Surface Climatology of the Community Land Model Coupled to the NCAR Community Climate Model

Gordon B. Bonan; Keith W. Oleson; Mariana Vertenstein; Samuel Levis; Xubin Zeng; Yongjiu Dai; Robert E. Dickinson; Zong-Liang Yang

The land surface parameterization used with the community climate model (CCM3) and the climate system model (CSM1), the National Center for Atmospheric Research land surface model (NCAR LSM1), has been modified as part of the development of the next version of these climate models. This new model is known as the community land model (CLM2). In CLM2, the surface is represented by five primary subgrid land cover types (glacier, lake, wetland, urban, vegetated) in each grid cell. The vegetated portion of a grid cell is further divided into patches of up to 4 of 16 plant functional types, each with its own leaf and stem area index and canopy height. The relative area of each subgrid unit, the plant functional type, and leaf area index are obtained from 1-km satellite data. The soil texture dataset allows vertical profiles of sand and clay. Most of the physical parameterizations in the model were also updated. Major model differences include: 10 layers for soil temperature and soil water with explicit treatment of liquid water and ice; a multilayer snowpack; runoff based on the TOPMODEL concept; new formulation of ground and vegetation fluxes; and vertical root profiles from a global synthesis of ecological studies. Simulations with CCM3 show significant improvements in surface air temperature, snow cover, and runoff for CLM2 compared to LSM1. CLM2 generally warms surface air temperature in all seasons compared to LSM1, reducing or eliminating many cold biases. Annual precipitation over land is reduced from 2.35 mm day21 in LSM1 to 2.14 mm day21 in CLM2. The hydrologic cycle is also different. Transpiration and ground evaporation are reduced. Leaves and stems evaporate more intercepted water annually in CLM2 than LSM1. Global runoff from land increases from 0.75 mm day21 in LSM1 to 0.84 mm day21 in CLM2. The annual cycle of runoff is greatly improved in CLM2, especially in arctic and boreal regions where the model has low runoff in cold seasons when the soil is frozen and high runoff during the snowmelt season. Most of the differences between CLM2 and LSM1 are attributed to particular parameterizations rather than to different surface datasets. Important processes include: multilayer snow, frozen water, interception, soil water limitation to latent heat, and higher aerodynamic resistances to heat exchange from ground.


Journal of Hydrometeorology | 2006

GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview

Randal D. Koster; Y. C. Sud; Zhichang Guo; Paul A. Dirmeyer; Gordon B. Bonan; Keith W. Oleson; Edmond Chan; Diana Verseghy; Peter M. Cox; Harvey Davies; Eva Kowalczyk; C. T. Gordon; Shinjiro Kanae; David M. Lawrence; Ping Liu; David Mocko; Cheng-Hsuan Lu; K. L. Mitchell; Sergey Malyshev; B. J. McAvaney; Taikan Oki; Tomohito J. Yamada; A. J. Pitman; Christopher M. Taylor; Ratko Vasic; Yongkang Xue

Abstract The Global Land–Atmosphere Coupling Experiment (GLACE) is a model intercomparison study focusing on a typically neglected yet critical element of numerical weather and climate modeling: land–atmosphere coupling strength, or the degree to which anomalies in land surface state (e.g., soil moisture) can affect rainfall generation and other atmospheric processes. The 12 AGCM groups participating in GLACE performed a series of simple numerical experiments that allow the objective quantification of this element for boreal summer. The derived coupling strengths vary widely. Some similarity, however, is found in the spatial patterns generated by the models, with enough similarity to pinpoint multimodel “hot spots” of land–atmosphere coupling. For boreal summer, such hot spots for precipitation and temperature are found over large regions of Africa, central North America, and India; a hot spot for temperature is also found over eastern China. The design of the GLACE simulations are described in full detai...


Bulletin of the American Meteorological Society | 2015

The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability

Jennifer E. Kay; Clara Deser; Adam S. Phillips; A Mai; Cecile Hannay; Gary Strand; Julie M. Arblaster; Susan C. Bates; Gokhan Danabasoglu; James Edwards; Marika M. Holland; Paul J. Kushner; Jean-Francois Lamarque; David M. Lawrence; Keith Lindsay; A Middleton; Ernesto Munoz; Richard Neale; Keith W. Oleson; Lorenzo M. Polvani; Mariana Vertenstein

AbstractWhile internal climate variability is known to affect climate projections, its influence is often underappreciated and confused with model error. Why? In general, modeling centers contribute a small number of realizations to international climate model assessments [e.g., phase 5 of the Coupled Model Intercomparison Project (CMIP5)]. As a result, model error and internal climate variability are difficult, and at times impossible, to disentangle. In response, the Community Earth System Model (CESM) community designed the CESM Large Ensemble (CESM-LE) with the explicit goal of enabling assessment of climate change in the presence of internal climate variability. All CESM-LE simulations use a single CMIP5 model (CESM with the Community Atmosphere Model, version 5). The core simulations replay the twenty to twenty-first century (1920–2100) 30 times under historical and representative concentration pathway 8.5 external forcing with small initial condition differences. Two companion 1000+-yr-long preindu...


Journal of Hydrometeorology | 2006

Simulation of Global Land Surface Conditions from 1948 to 2004. Part I: Forcing Data and Evaluations

Taotao Qian; Aiguo Dai; Kevin E. Trenberth; Keith W. Oleson

Abstract Because of a lack of observations, historical simulations of land surface conditions using land surface models are needed for studying variability and changes in the continental water cycle and for providing initial conditions for seasonal climate predictions. Atmospheric forcing datasets are also needed for land surface model development. The quality of atmospheric forcing data greatly affects the ability of land surface models to realistically simulate land surface conditions. Here a carefully constructed global forcing dataset for 1948–2004 with 3-hourly and T62 (∼1.875°) resolution is described, and historical simulations using the latest version of the Community Land Model version 3.0 (CLM3) are evaluated using available observations of streamflow, continental freshwater discharge, surface runoff, and soil moisture. The forcing dataset was derived by combining observation-based analyses of monthly precipitation and surface air temperature with intramonthly variations from the National Center...


Journal of Climate | 2006

The Community Land Model and Its Climate Statistics as a Component of the Community Climate System Model

Robert E. Dickinson; Keith W. Oleson; Gordon B. Bonan; Forrest M. Hoffman; Peter E. Thornton; Mariana Vertenstein; Zong-Liang Yang; Xubin Zeng

Abstract Several multidecadal simulations have been carried out with the new version of the Community Climate System Model (CCSM). This paper reports an analysis of the land component of these simulations. Global annual averages over land appear to be within the uncertainty of observational datasets, but the seasonal cycle over land of temperature and precipitation appears to be too weak. These departures from observations appear to be primarily a consequence of deficiencies in the simulation of the atmospheric model rather than of the land processes. High latitudes of northern winter are biased sufficiently warm to have a significant impact on the simulated value of global land temperature. The precipitation is approximately doubled from what it should be at some locations, and the snowpack and spring runoff are also excessive. The winter precipitation over Tibet is larger than observed. About two-thirds of this precipitation is sublimated during the winter, but what remains still produces a snowpack tha...


Journal of Hydrometeorology | 2007

The Partitioning of Evapotranspiration into Transpiration, Soil Evaporation, and Canopy Evaporation in a GCM: Impacts on Land–Atmosphere Interaction

David M. Lawrence; Peter E. Thornton; Keith W. Oleson; Gordon B. Bonan

Abstract Although the global partitioning of evapotranspiration (ET) into transpiration, soil evaporation, and canopy evaporation is not well known, most current land surface schemes and the few available observations indicate that transpiration is the dominant component on the global scale, followed by soil evaporation and canopy evaporation. The Community Land Model version 3 (CLM3), however, does not reflect this global view of ET partitioning, with soil evaporation and canopy evaporation far outweighing transpiration. One consequence of this unrealistic ET partitioning in CLM3 is that photosynthesis, which is linked to transpiration through stomatal conductance, is significantly underestimated on a global basis. A number of modifications to CLM3 vegetation and soil hydrology parameterizations are described that improve ET partitioning and reduce an apparent dry soil bias in CLM3. The modifications reduce canopy interception and evaporation, reduce soil moisture stress on transpiration, increase transp...

Collaboration


Dive into the Keith W. Oleson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David M. Lawrence

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Samuel Levis

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mariana Vertenstein

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Peter J. Lawrence

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter E. Thornton

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert E. Dickinson

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge