Kelly L. Robinson
University of Southern Mississippi
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kelly L. Robinson.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Robert H. Condon; Carlos M. Duarte; Kylie Anne Pitt; Kelly L. Robinson; Cathy H. Lucas; Kelly R. Sutherland; Hermes Mianzan; Molly Bogeberg; Jennifer E. Purcell; Mary Beth Decker; Shin-ichi Uye; Laurence P. Madin; Richard D. Brodeur; Steven H. D. Haddock; Alenka Malej; Gregory D. Parry; Elena Eriksen; Javier Quiñones; Milena Acha; Michel Harvey; James Michael Arthur; William M. Graham
A perceived recent increase in global jellyfish abundance has been portrayed as a symptom of degraded oceans. This perception is based primarily on a few case studies and anecdotal evidence, but a formal analysis of global temporal trends in jellyfish populations has been missing. Here, we analyze all available long-term datasets on changes in jellyfish abundance across multiple coastal stations, using linear and logistic mixed models and effect-size analysis to show that there is no robust evidence for a global increase in jellyfish. Although there has been a small linear increase in jellyfish since the 1970s, this trend was unsubstantiated by effect-size analysis that showed no difference in the proportion of increasing vs. decreasing jellyfish populations over all time periods examined. Rather, the strongest nonrandom trend indicated jellyfish populations undergo larger, worldwide oscillations with an approximate 20-y periodicity, including a rising phase during the 1990s that contributed to the perception of a global increase in jellyfish abundance. Sustained monitoring is required over the next decade to elucidate with statistical confidence whether the weak increasing linear trend in jellyfish after 1970 is an actual shift in the baseline or part of an oscillation. Irrespective of the nature of increase, given the potential damage posed by jellyfish blooms to fisheries, tourism, and other human industries, our findings foretell recurrent phases of rise and fall in jellyfish populations that society should be prepared to face.
BioScience | 2012
Robert H. Condon; William M. Graham; Carlos M. Duarte; Kylie Anne Pitt; Cathy H. Lucas; Steven H. D. Haddock; Kelly R. Sutherland; Kelly L. Robinson; Michael N Dawson; Mary Beth Decker; Claudia E. Mills; Jennifer E. Purcell; Alenka Malej; Hermes Mianzan; Shin-ichi Uye; Stefan Gelcich; Laurence P. Madin
During the past several decades, high numbers of gelatinous Zooplankton species have been reported in many estuarine and coastal ecosystems. Coupled with media-driven public perception, a paradigm has evolved in which the global ocean ecosystems are thought to he heading toward being dominated by “nuisance” jellyfish. We question this current paradigm by presenting a broad overview of gelatinous Zooplankton in a historical context to develop the hypothesis that population changes reflect the human-mediated alteration of global ocean ecosystems. To this end, we synthesize information related to the evolutionary context of contemporary gelatinous Zooplankton blooms, the human frame of reference for changes in gelatinous Zooplankton populations, and whether sufficient data are available to have established the paradigm. We conclude that the current paradigm in which it is believed that there has been a global increase in gelatinous Zooplankton is unsubstantiated, and we develop a strategy for addressing the critical questions about long-term, human-related changes in the sea as they relate to gelatinous Zooplankton blooms.
Frontiers in Ecology and the Environment | 2013
Carlos M. Duarte; Kylie Anne Pitt; Cathy H. Lucas; Jennifer E. Purcell; Shin-ich Uye; Kelly L. Robinson; Lucas Brotz; Mary Beth Decker; Kelly R. Sutherland; Alenk Malej; Laurence P. Madin; Hermes Mianzan; Josep Maria Gili; Veronica Fuentes; Dacha Atienza; Francesc Pagés; Jennafer Malek; William M. Graham; Robert H. Condon
Jellyfish (Cnidaria, Scyphozoa) blooms appear to be increasing in both intensity and frequency in many coastal areas worldwide, due to multiple hypothesized anthropogenic stressors. Here, we propose that the proliferation of artificial structures – associated with (1) the exponential growth in shipping, aquaculture, and other coastal industries, and (2) coastal protection (collectively, “ocean sprawl”) – provides habitat for jellyfish polyps and may be an important driver of the global increase in jellyfish blooms. However, the habitat of the benthic polyps that commonly result in coastal jellyfish blooms has remained elusive, limiting our understanding of the drivers of these blooms. Support for the hypothesized role of ocean sprawl in promoting jellyfish blooms is provided by observations and experimental evidence demonstrating that jellyfish larvae settle in large numbers on artificial structures in coastal waters and develop into dense concentrations of jellyfish-producing polyps.
PLOS ONE | 2013
Kylie Anne Pitt; Carlos M. Duarte; Cathy H. Lucas; Kelly R. Sutherland; Robert H. Condon; Hermes Mianzan; Jennifer E. Purcell; Kelly L. Robinson; Shin-ichi Uye
Jellyfish form spectacular blooms throughout the world’s oceans. Jellyfish body plans are characterised by high water and low carbon contents which enables them to grow much larger than non-gelatinous animals of equivalent carbon content and to deviate from non-gelatinous pelagic animals when incorporated into allometric relationships. Jellyfish have, however, been argued to conform to allometric relationships when carbon content is used as the metric for comparison. Here we test the hypothesis that differences in allometric relationships for several key functional parameters remain for jellyfish even after their body sizes are scaled to their carbon content. Data on carbon and nitrogen contents, rates of respiration, excretion, growth, longevity and swimming velocity of jellyfish and other pelagic animals were assembled. Allometric relationships between each variable and the equivalent spherical diameters of jellyfish and other pelagic animals were compared before and after sizes of jellyfish were standardised for their carbon content. Before standardisation, the slopes of the allometric relationships for respiration, excretion and growth were the same for jellyfish and other pelagic taxa but the intercepts differed. After standardisation, slopes and intercepts for respiration were similar but excretion rates of jellyfish were 10× slower, and growth rates 2× faster than those of other pelagic animals. Longevity of jellyfish was independent of size. The slope of the allometric relationship of swimming velocity of jellyfish differed from that of other pelagic animals but because they are larger jellyfish operate at Reynolds numbers approximately 10× greater than those of other pelagic animals of comparable carbon content. We conclude that low carbon and high water contents alone do not explain the differences in the intercepts or slopes of the allometric relationships of jellyfish and other pelagic animals and that the evolutionary longevity of jellyfish and their propensity to form blooms is facilitated by their unique body plans.
Frontiers in Ecology and the Environment | 2014
William M. Graham; Stefan Gelcich; Kelly L. Robinson; Carlos M. Duarte; Lucas Brotz; Jennifer E. Purcell; Laurence P. Madin; Hermes Mianzan; Kelly R. Sutherland; Shin-ichi Uye; Kylie Anne Pitt; Cathy H. Lucas; Molly Bogeberg; Richard D. Brodeur; Robert H. Condon
Jellyfish are usually perceived as harmful to humans and are seen as “pests”. This negative perception has hindered knowledge regarding their value in terms of ecosystem services. As humans increasingly modify and interact with coastal ecosystems, it is important to evaluate the benefits and costs of jellyfish, given that jellyfish bloom size, frequency, duration, and extent are apparently increasing in some regions of the world. Here we explore those benefits and costs as categorized by regulating, supporting, cultural, and provisioning ecosystem services. A geographical perspective of human vulnerability to jellyfish over four categories of human well-being (health care, food, energy, and freshwater production) is also discussed in the context of thresholds and trade-offs to enable social adaptation. Whereas beneficial services provided by jellyfish likely scale linearly with biomass (perhaps peaking at a saturation point), non-linear thresholds exist for negative impacts to ecosystem services. We sugge...
Archive | 2014
Hermes Mianzan; Javier Quiñones; Sergio Palma; Agustín Schiariti; E. Marcelo Acha; Kelly L. Robinson; William M. Graham
Blooms and strandings of Chrysaora plocamia are reported to occur along both Atlantic and Pacific South American coasts. First described in Peruvian waters by Lesson (1830) almost two centuries ago as Cyanea plocamia, there is surprisingly little ecological information about this conspicuous animal. This chapter reviews current knowledge about C. plocamia biology and ecology, its relationship with pelagic fisheries and climate and the problems blooms cause in the Humboldt Current and Patagonian shelf ecosystems. Chrysaora plocamia has important ecological roles, including trophic and symbiotic interactions with fish and sea turtles. Population variability has a clear relationship with climate where phases of high C. plocamia biomass were associated with El Nino events occurring during warm “El Viejo” regimes. Interestingly, their estimated biomass occasionally approached those of sardines or anchovies. This large jellyfish negatively affects human industries in the region when abundant, including fisheries, aquaculture, desalination plants and tourism. Understanding relationships between jellyfish blooms and environmental drivers (e.g. ENSO, regime shifts) should allow forecasting of the jellyfish abundance and potential vulnerabilities such that resource managers and industrial fisheries owners may prepare for costly outbreaks.
Global Change Biology | 2010
F. Joel Fodrie; Kenneth L. Heck; Sean P. Powers; William M. Graham; Kelly L. Robinson
Oceanography | 2014
Kelly L. Robinson; James J. Ruzicka; Mary Beth Decker; Richard D. Brodeur; Frank J. Hernandez; Javier Quiñones; Marcelo Acha; Shin-ichi Uye; Hermes Mianzan; William M. Graham
Global Ecology and Biogeography | 2014
Cathy H. Lucas; Daniel O.B. Jones; Catherine J. Hollyhead; Robert H. Condon; Carlos M. Duarte; William M. Graham; Kelly L. Robinson; Kylie Anne Pitt; Mark Schildhauer; James Regetz
Limnology and Oceanography | 2013
Kelly L. Robinson; William M. Graham