Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mary Beth Decker is active.

Publication


Featured researches published by Mary Beth Decker.


Hydrobiologia | 2001

The ctenophore Mnemiopsis in native and exotic habitats: U.S. estuaries versus the Black Sea basin

Jennifer E. Purcell; Tamara A. Shiganova; Mary Beth Decker; Edward D. Houde

The native habitats of the ctenophore, Mnemiopsis, are temperate to subtropical estuaries along the Atlantic coast of North and South America, where it is found in an extremely wide range of environmental conditions (winter low and summer high temperatures of 2 and 32 °C, respectively, and salinities of <2–38). In the early 1980s, it was accidentally introduced to the Black Sea, where it flourished and expanded into the Azov, Marmara, Mediterranean and Caspian Seas. We compile data showing that Mnemiopsis has high potentials of growth, reproduction and feeding that enable this species to be a predominant zooplanktivore in a wide variety of habitats; review the population distributions and dynamics of Mnemiopsis in U.S. waters and in the Black Sea region; and examine the effects of temperature and salinity, zooplankton availability and predator abundance on Mnemiopsis population size in both regions, and the effects of Mnemiopsis on zooplankton, ichthyoplankton and fish populations, focusing on Chesapeake Bay and the Black Sea. In both regions, Mnemiopsis populations are restricted by low winter temperatures (<2 °C). In native habitats, predators of Mnemiopsis often limit their populations, and zooplanktivorous fish are abundant and may compete with the ctenophores for food. By contrast, in the Black Sea region, no obvious predators of Mnemiopsis were present during the decade following introduction when the ctenophore populations flourished. Additionally, zooplanktivorous fish populations had been severely reduced by over fishing prior to the ctenophore outbreak. Thus, small populations of potential predators and competitors for food enabled Mnemiopsis populations to swell in the new habitats. In Chesapeake Bay, Mnemiopsis consumes substantial proportions of zooplankton daily, but may only noticeably reduce zooplankton populations when predators of Mnemiopsis are uncommon. Mnemiopsis also is an important predator of fish eggs in both locations. In the Black Sea, reductions in zooplankton, ichthyoplankton and zooplanktivorous fish populations have been attributed to Mnemiopsis. We conclude that the enormous impact of Mnemiopsis on the Black Sea ecosystem occurred because of the shortage of predators and competitors in the late 1980s and early 1990s. The appearance of the ctenophore, Beroe ovata, may promote the recovery of the Black Sea ecosystem from the effects of the Mnemiopsis invasion.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Recurrent jellyfish blooms are a consequence of global oscillations

Robert H. Condon; Carlos M. Duarte; Kylie Anne Pitt; Kelly L. Robinson; Cathy H. Lucas; Kelly R. Sutherland; Hermes Mianzan; Molly Bogeberg; Jennifer E. Purcell; Mary Beth Decker; Shin-ichi Uye; Laurence P. Madin; Richard D. Brodeur; Steven H. D. Haddock; Alenka Malej; Gregory D. Parry; Elena Eriksen; Javier Quiñones; Milena Acha; Michel Harvey; James Michael Arthur; William M. Graham

A perceived recent increase in global jellyfish abundance has been portrayed as a symptom of degraded oceans. This perception is based primarily on a few case studies and anecdotal evidence, but a formal analysis of global temporal trends in jellyfish populations has been missing. Here, we analyze all available long-term datasets on changes in jellyfish abundance across multiple coastal stations, using linear and logistic mixed models and effect-size analysis to show that there is no robust evidence for a global increase in jellyfish. Although there has been a small linear increase in jellyfish since the 1970s, this trend was unsubstantiated by effect-size analysis that showed no difference in the proportion of increasing vs. decreasing jellyfish populations over all time periods examined. Rather, the strongest nonrandom trend indicated jellyfish populations undergo larger, worldwide oscillations with an approximate 20-y periodicity, including a rising phase during the 1990s that contributed to the perception of a global increase in jellyfish abundance. Sustained monitoring is required over the next decade to elucidate with statistical confidence whether the weak increasing linear trend in jellyfish after 1970 is an actual shift in the baseline or part of an oscillation. Irrespective of the nature of increase, given the potential damage posed by jellyfish blooms to fisheries, tourism, and other human industries, our findings foretell recurrent phases of rise and fall in jellyfish populations that society should be prepared to face.


BioScience | 2012

Questioning the Rise of Gelatinous Zooplankton in the World's Oceans

Robert H. Condon; William M. Graham; Carlos M. Duarte; Kylie Anne Pitt; Cathy H. Lucas; Steven H. D. Haddock; Kelly R. Sutherland; Kelly L. Robinson; Michael N Dawson; Mary Beth Decker; Claudia E. Mills; Jennifer E. Purcell; Alenka Malej; Hermes Mianzan; Shin-ichi Uye; Stefan Gelcich; Laurence P. Madin

During the past several decades, high numbers of gelatinous Zooplankton species have been reported in many estuarine and coastal ecosystems. Coupled with media-driven public perception, a paradigm has evolved in which the global ocean ecosystems are thought to he heading toward being dominated by “nuisance” jellyfish. We question this current paradigm by presenting a broad overview of gelatinous Zooplankton in a historical context to develop the hypothesis that population changes reflect the human-mediated alteration of global ocean ecosystems. To this end, we synthesize information related to the evolutionary context of contemporary gelatinous Zooplankton blooms, the human frame of reference for changes in gelatinous Zooplankton populations, and whether sufficient data are available to have established the paradigm. We conclude that the current paradigm in which it is believed that there has been a global increase in gelatinous Zooplankton is unsubstantiated, and we develop a strategy for addressing the critical questions about long-term, human-related changes in the sea as they relate to gelatinous Zooplankton blooms.


Frontiers in Ecology and the Environment | 2013

Is global ocean sprawl a cause of jellyfish blooms

Carlos M. Duarte; Kylie Anne Pitt; Cathy H. Lucas; Jennifer E. Purcell; Shin-ich Uye; Kelly L. Robinson; Lucas Brotz; Mary Beth Decker; Kelly R. Sutherland; Alenk Malej; Laurence P. Madin; Hermes Mianzan; Josep Maria Gili; Veronica Fuentes; Dacha Atienza; Francesc Pagés; Jennafer Malek; William M. Graham; Robert H. Condon

Jellyfish (Cnidaria, Scyphozoa) blooms appear to be increasing in both intensity and frequency in many coastal areas worldwide, due to multiple hypothesized anthropogenic stressors. Here, we propose that the proliferation of artificial structures – associated with (1) the exponential growth in shipping, aquaculture, and other coastal industries, and (2) coastal protection (collectively, “ocean sprawl”) – provides habitat for jellyfish polyps and may be an important driver of the global increase in jellyfish blooms. However, the habitat of the benthic polyps that commonly result in coastal jellyfish blooms has remained elusive, limiting our understanding of the drivers of these blooms. Support for the hypothesized role of ocean sprawl in promoting jellyfish blooms is provided by observations and experimental evidence demonstrating that jellyfish larvae settle in large numbers on artificial structures in coastal waters and develop into dense concentrations of jellyfish-producing polyps.


Hydrobiologia | 2001

Effects of low dissolved oxygen on survival and asexual reproduction of scyphozoan polyps (Chrysaora quinquecirrha)

Robert H. Condon; Mary Beth Decker; Jennifer E. Purcell

Hypoxic conditions are common in many coastal environments such as Chesapeake Bay. While medusae appear to be quite tolerant of low dissolved oxygen (DO) concentrations, the effects of hypoxia on the benthic polyp stages are unknown. Chrysaora quinquecirrha (DeSor) polyps, and were subjected to 5 DO treatments (air-saturated [control], 3.5, 2.5, 1.5 and 0.5 mg l−1) in the laboratory. Polyp survival and development were documented over 24 d. Virtually no mortality occurred in any treatment during the first 5 d. Total polyp mortality after 24 d was 59.3% at the lowest DO concentration, whereas <3% mortality was observed in the air-saturated treatment. Formation of stolons and strobilae occurred in all treatments, however, the proportions of polyps undergoing stolonation and strobilation were significantly greater in all DO concentrations above 0.5 mg l−1. Polyp encystment was not observed in any treatment over the course of the 24 d experiment. These results indicate that polyps can survive and asexually propagate even during prolonged exposure to hypoxic conditions.


Polar Biology | 1996

The importance of prey aggregations to the distribution of Brünnich's guillemots in Storfjorden, Svalbard

Fridtjof Mehlum; George L. Hunt; Zygmunt Klusek; Mary Beth Decker; Nina Nordlund

We studied the influence of the distribution of prey and hydrographic fronts on the spatial distribution of foraging Brunnichs guillemots (Uria lomvia) in Storfjorden, southeastern Svalbard in late July 1992. Two large breeding colonies, comprising a total of 540000 individuals, were located adjacent to the study area, and large numbers of Brünnichs gullemots from these colonies foraged within the area, as well as to the south, outside of Storfjorden. Within the study area, most guillemots foraged on the west side of the fjord, coincident with a weak subsurface front between warm Atlantic water, which penetrated Storfjorden from the south, and cold Arctic water. Food samples from the guillemots collected in the study area contained primarily crustaceans (Parathemisto spp. and Thysanoessa inermis) and polar cod Boreogadus saida. Acoustic observations of prey were differentiated into two classes of signals, which we interpreted as originating from aggregated and dispersed organisms. The numbers of foraging guillemots were strongly correlated with the strength of echoes of the aggregated type, whereas correlations with dispersed echoes were consistently weaker. The distribution of foraging guillemots showed no significant correlations with either horizontal or vertical gradients of physical properties of the water column. Our finding that guillemots respond differently to aggregated and dispersed prey has important implications both for the interpretation of past work on the foraging ecology of marine birds, and for the management of fisheries.


Biological Invasions | 2015

Worldwide phylogeography of the invasive ctenophore Mnemiopsis leidyi (Ctenophora) based on nuclear and mitochondrial DNA data

K. M. Bayha; M. H. Chang; Carol Mariani; Jonathan L. Richardson; Danielle L. Edwards; T. S. DeBoer; C. Moseley; Emre Aksoy; Mary Beth Decker; P. M. Gaffney; G. R. Harbison; J. H. McDonald; Adalgisa Caccone

The ctenophore Mnemiopsis leidyi is one of the most successful marine bioinvaders on record. Native to the Atlantic coast of the Americas, M. leidyi invaded the Black Sea, Caspian and Mediterranean Seas beginning the in late 1980s, followed by the North and Baltic Seas starting in 2006, with major concomitant alterations in pelagic ecology, including fishery collapses in some cases. Using extensive native range sampling (21 sites), along with 11 invasive sites in the Black, Caspian, Mediterranean, North and Baltic Seas, we examined M. leidyi worldwide phylogeographic patterns using data from mitochondrial cytochrome b (cytb) and six nuclear microsatellite loci. Cytb and microsatellite data sets showed different levels of genetic differentiation in the native range. Analyses of cytb data revealed considerable genetic differentiation, recovering three major clusters (northwestern Atlantic, Caribbean, and South America) and further divided northwestern Atlantic sampling sites into three groups, separated approximately at Cape Hatteras on the US Atlantic coast and at the Floridian peninsula, separating the Gulf of Mexico and Atlantic coasts. In contrast, microsatellite data only distinguished samples north and south of Cape Hatteras, and suggested considerable gene flow among native samples with clear evidence of isolation by distance. Both cytb and microsatellite data sets indicated that the northern invaders (North/Baltic Seas) originated from north of Cape Hatteras, with cytb data pointing to Delaware and north. Microsatellite data indicated a source for the southern invaders (Black, Caspian and Mediterranean Seas) to be south of Cape Hatteras, while cytb data narrowed the source location to the Gulf of Mexico region. Both cytb and microsatellite data sets suggested that the southern invasion was associated with genetic bottlenecks while evidence was equivocal for the northern invasion. By increasing the native range spatial sampling, our dataset was able to sufficiently characterize patterns and levels of genetic differentiation in the native range of M. leidyi and identify likely biogeographic boundaries, allowing for the most complete characterization of M. leidyi’s invasion histories and most realistic estimates of its source region(s) to date.


Biological Invasions | 2015

Population-level perspectives on global change: genetic and demographic analyses indicate various scales, timing, and causes of scyphozoan jellyfish blooms

Michael N Dawson; Kristin Cieciel; Mary Beth Decker; Graeme C. Hays; Cathy H. Lucas; Kylie Anne Pitt

Abstract Whether a perceived increase in the abundance of jellyfishes is related to changing marine environments has been considered primarily using large-scale analyses of multi-species assemblages. Yet jellyfish blooms—rapid increases in the biomass of pelagic coelenterate species—are single-species demographic events. Using published and new genetic analyses and population surveys, we investigate whether there may be a critical knowledge gap between the scales of recent analyses and the scales of natural phenomena. We find that scyphomedusae may show population genetic structure over scales of tens to hundreds of kilometers, that environments vary regionally and locally, and that populations of medusae can display uncorrelated dynamics on these scales. These findings suggest genetic differences between populations and/or environmental differences between sites are important determinants of population dynamics in these jellyfishes. Moreover, the local abundance of medusae may be most strongly correlated with preceding rather than current local environmental conditions, indicating there is a cumulative time-course to the formation of ‘blooms’. Broad-scale macro-ecological analyses will need to build from coordinated, long-term, fine-grained studies to synthesize, rather than mask, population-level phenomena in larger-scale analyses.


Eos, Transactions American Geophysical Union | 2002

Forecasting system predicts presence of sea nettles in Chesapeake Bay

Chris W. Brown; Raleigh R. Hood; Zhen Li; Mary Beth Decker; Thomas F. Gross; Jennifer E. Purcell; Harry V. Wang

Outbreaks of noxious biota, which occur in both aquatic and terrestrial systems, can have considerable negative economic impacts. For example, an increasing frequency of harmful algal blooms worldwide has negatively affected the tourism industry in many regions. Such impacts could be mitigated if the conditions that give rise to these outbreaks were known and could be monitored. Recent advances in technology and communications allow us to continuously measure and model many environmental factors that are responsible for outbreaks of certain noxious organisms. A new prototype ecological forecasting system predicts the likelihood of occurrence of the sea nettle (Chrysaora quinquecirrha), a stinging jellyfish, in the Chesapeake Bay.


Archive | 2014

Population Fluctuations of Jellyfish in the Bering Sea and Their Ecological Role in This Productive Shelf Ecosystem

Mary Beth Decker; Kristin Cieciel; Alexander Zavolokin; Robert Lauth; Richard D. Brodeur; Kenneth O. Coyle

A long-term fisheries monitoring program operating in the southeastern Bering Sea detected a biomass increase of large jellyfish in the 1990s. However, medusa biomass declined to lower levels after 2000, but then increased once again in 2009. Similar population fluctuations are revealed in other monitoring efforts that extend to the northeast Bering Sea and to the west in Russian waters. Decadal oscillations in climate, rather than overfishing or other anthropogenic factors, are thought to be responsible for these trends. This case study of Bering Sea jellyfish blooms demonstrates that apparent increases in jellyfish populations may not necessarily be sustained and that increases may occur in response to climate variability. Herein we review what is known about the abundance and distribution of the dominant species of jellyfish in the Bering Sea and their potential interactions with other parts of the ecosystem, particularly those of interest to humans.

Collaboration


Dive into the Mary Beth Decker's collaboration.

Top Co-Authors

Avatar

Jennifer E. Purcell

Western Washington University

View shared research outputs
Top Co-Authors

Avatar

George L. Hunt

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Richard D. Brodeur

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Kelly L. Robinson

University of Southern Mississippi

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hermes Mianzan

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Carol Ladd

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Kenneth O. Coyle

University of Alaska Fairbanks

View shared research outputs
Researchain Logo
Decentralizing Knowledge