Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kerstin Kirchhoff is active.

Publication


Featured researches published by Kerstin Kirchhoff.


PLOS ONE | 2007

Polymorphisms within novel risk loci for type 2 diabetes determine β-cell function.

Harald Staiger; Fausto Machicao; Norbert Stefan; Otto Tschritter; Claus Thamer; Konstantinos Kantartzis; Silke A. Schäfer; Kerstin Kirchhoff; Andreas Fritsche; Hans-Ulrich Häring

Background Type 2 diabetes arises when insulin resistance-induced compensatory insulin secretion exhausts. Insulin resistance and/or β-cell dysfunction result from the interaction of environmental factors (high-caloric diet and reduced physical activity) with a predisposing polygenic background. Very recently, genetic variations within four novel genetic loci (SLC30A8, HHEX, EXT2, and LOC387761) were reported to be more frequent in subjects with type 2 diabetes than in healthy controls. However, associations of these variations with insulin resistance and/or β-cell dysfunction were not assessed. Methodology/Principal Findings By genotyping of 921 metabolically characterized German subjects for the reported candidate single nucleotide polymorphisms (SNPs), we show that the major alleles of the SLC30A8 SNP rs13266634 and the HHEX SNP rs7923837 associate with reduced insulin secretion stimulated by orally or intravenously administered glucose, but not with insulin resistance. In contrast, the other reported type 2 diabetes candidate SNPs within the EXT2 and LOC387761 loci did not associate with insulin resistance or β-cell dysfunction, respectively. Conclusions/Significance The HHEX and SLC30A8 genes encode for proteins that were shown to be required for organogenesis of the ventral pancreas and for insulin maturation/storage, respectively. Therefore, the major alleles of type 2 diabetes candidate SNPs within these genetic loci represent crucial alleles for β-cell dysfunction and, thus, might confer increased susceptibility of β-cells towards adverse environmental factors.


Obesity | 2008

Impact of Variation in the FTO Gene on Whole Body Fat Distribution, Ectopic Fat, and Weight Loss

Axel Haupt; Claus Thamer; Jiirgen Machann; Kerstin Kirchhoff; Norbert Stefan; Otto Tschritter; Fausto Machicao; Fritz Schick; Hans-Ulrich Häring; Andreas Fritsche

Polymorphisms in the fat mass‐ and obesity‐associated (FTO) gene have been identified to be associated with obesity and diabetes in large genome‐wide association studies. We hypothesized that variation in the FTO gene has an impact on whole body fat distribution and insulin sensitivity, and influences weight change during lifestyle intervention. To test this hypothesis, we genotyped 1,466 German subjects, with increased risk for type 2 diabetes, for single‐nucleotide polymorphism rs8050136 in the FTO gene and estimated glucose tolerance and insulin sensitivity from an oral glucose tolerance test (OGTT). Distribution of fat depots was quantified using whole body magnetic resonance (MR) imaging and spectroscopy in 298 subjects. Two‐hundred and four subjects participated in a lifestyle intervention program and were examined after a follow‐up of 9 months. In the cross‐sectional analysis, the A allele of rs8050136 in FTO was associated with a higher BMI, body fat, and lean body mass (all P < 0.001). There was a significant effect of variation in the FTO gene on subcutaneous fat (P ≤ 0.05) and a trend for liver fat content, nonvisceral adipose tissue, and visceral fat (all P ≤ 0.1). However, the single‐nucleotide polymorphism was not associated with insulin sensitivity or secretion independent of BMI (all P > 0.05). During lifestyle intervention, there was also no influence of the FTO polymorphism on changes in body weight or fat distribution. In conclusion, despite an association with BMI and whole body fat distribution, variation in the FTO locus has no effect on the success of a lifestyle intervention program.


PLOS ONE | 2008

Polymorphisms within the Novel Type 2 Diabetes Risk Locus MTNR1B Determine β-Cell Function

Harald Staiger; Fausto Machicao; Silke A. Schäfer; Kerstin Kirchhoff; Konstantinos Kantartzis; Martina Guthoff; Günther Silbernagel; Norbert Stefan; Hans-Ulrich Häring; Andreas Fritsche

Background Very recently, a novel type 2 diabetes risk gene, i.e., MTNR1B, was identified and reported to affect fasting glycemia. Using our thoroughly phenotyped cohort of subjects at an increased risk for type 2 diabetes, we assessed the association of common genetic variation within the MTNR1B locus with obesity and prediabetes traits, namely impaired insulin secretion and insulin resistance. Methodology/Principal Findings We genotyped 1,578 non-diabetic subjects, metabolically characterized by oral glucose tolerance test, for five tagging single nucleotide polymorphisms (SNPs) covering 100% of common genetic variation (minor allele frequency >0.05) within the MTNR1B locus (rs10830962, rs4753426, rs12804291, rs10830963, rs3781638). In a subgroup (N = 513), insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamp, and in a further subgroup (N = 301), glucose-stimulated insulin secretion was determined by intravenous glucose tolerance test. After appropriate adjustment for confounding variables and Bonferroni correction for multiple comparisons, none of the tagging SNPs was reliably associated with measures of adiposity. SNPs rs10830962, rs4753426, and rs10830963 were significantly associated with higher fasting plasma glucose concentrations (p<0.0001) and reduced OGTT- and IVGTT-induced insulin release (p≤0.0007 and p≤0.01, respectively). By contrast, SNP rs3781638 displayed significant association with lower fasting plasma glucose levels and increased OGTT-induced insulin release (p<0.0001 and p≤0.0002, respectively). Moreover, SNP rs3781638 revealed significant association with elevated fasting- and OGTT-derived insulin sensitivity (p≤0.0021). None of the MTNR1B tagging SNPs altered proinsulin-to-insulin conversion. Conclusions/Significance In conclusion, common genetic variation within MTNR1B determines glucose-stimulated insulin secretion and plasma glucose concentrations. Their impact on β-cell function might represent the prevailing pathomechanism how MTNR1B variants increase the type 2 diabetes risk.


Diabetes | 2009

Association of Type 2 Diabetes Candidate Polymorphisms in KCNQ1 With Incretin and Insulin Secretion

Karsten Müssig; Harald Staiger; Fausto Machicao; Kerstin Kirchhoff; Martina Guthoff; Silke A. Schäfer; Konstantinos Kantartzis; Günther Silbernagel; Norbert Stefan; Jens J. Holst; Baptist Gallwitz; Hans-Ulrich Häring; Andreas Fritsche

OBJECTIVE KCNQ1 gene polymorphisms are associated with type 2 diabetes. This linkage appears to be mediated by altered β-cell function. In an attempt to study underlying mechanisms, we examined the effect of four KCNQ1 single nucleotide polymorphisms (SNPs) on insulin secretion upon different stimuli. RESEARCH DESIGN AND METHODS We genotyped 1,578 nondiabetic subjects at increased risk of type 2 diabetes for rs151290, rs2237892, rs2237895, and rs2237897. All participants underwent an oral glucose tolerance test (OGTT); glucagon-like peptide (GLP)-1 and gastric inhibitory peptide secretion was measured in 170 participants. In 519 participants, a hyperinsulinemic-euglycemic clamp was performed, in 314 participants an intravenous glucose tolerance test (IVGTT), and in 102 subjects a hyperglycemic clamp combined with GLP-1 and arginine stimuli. RESULTS rs151290 was nominally associated with 30-min C-peptide levels during OGTT, first-phase insulin secretion, and insulinogenic index after adjustment in the dominant model (all P ≤ 0.01). rs2237892, rs2237895, and rs2237897 were nominally associated with OGTT-derived insulin secretion indexes (all P < 0.05). No SNPs were associated with β-cell function during intravenous glucose or GLP-1 administration. However, rs151290 was associated with glucose-stimulated gastric inhibitory polypeptide and GLP-1 increase after adjustment in the dominant model (P = 0.0042 and P = 0.0198, respectively). No associations were detected between the other SNPs and basal or stimulated incretin levels (all P ≥ 0.05). CONCLUSIONS Common genetic variation in KCNQ1 is associated with insulin secretion upon oral glucose load in a German population at increased risk of type 2 diabetes. The discrepancy between orally and intravenously administered glucose seems to be explained not by altered incretin signaling but most likely by changes in incretin secretion.


Diabetes | 2010

Combined Risk Allele Score of Eight Type 2 Diabetes Genes Is Associated With Reduced First-Phase Glucose-Stimulated Insulin Secretion During Hyperglycemic Clamps

Leen M. 't Hart; Annemarie M. Simonis-Bik; Giel Nijpels; Timon W. van Haeften; Silke A. Schäfer; Jeanine J. Houwing-Duistermaat; Dorret I. Boomsma; Marlous J. Groenewoud; Erwin Reiling; Els C. van Hove; Michaela Diamant; Mark H. H. Kramer; Robert J. Heine; J. Antonie Maassen; Kerstin Kirchhoff; Fausto Machicao; Hans-Ulrich Häring; P. Eline Slagboom; Gonneke Willemsen; E.M.W. Eekhoff; Eco J. C. de Geus; Jacqueline M. Dekker; Andreas Fritsche

OBJECTIVE At least 20 type 2 diabetes loci have now been identified, and several of these are associated with altered β-cell function. In this study, we have investigated the combined effects of eight known β-cell loci on insulin secretion stimulated by three different secretagogues during hyperglycemic clamps. RESEARCH DESIGN AND METHODS A total of 447 subjects originating from four independent studies in the Netherlands and Germany (256 with normal glucose tolerance [NGT]/191 with impaired glucose tolerance [IGT]) underwent a hyperglycemic clamp. A subset had an extended clamp with additional glucagon-like peptide (GLP)-1 and arginine (n = 224). We next genotyped single nucleotide polymorphisms in TCF7L2, KCNJ11, CDKAL1, IGF2BP2, HHEX/IDE, CDKN2A/B, SLC30A8, and MTNR1B and calculated a risk allele score by risk allele counting. RESULTS The risk allele score was associated with lower first-phase glucose-stimulated insulin secretion (GSIS) (P = 7.1 × 10−6). The effect size was equal in subjects with NGT and IGT. We also noted an inverse correlation with the disposition index (P = 1.6 × 10−3). When we stratified the study population according to the number of risk alleles into three groups, those with a medium- or high-risk allele score had 9 and 23% lower first-phase GSIS. Second-phase GSIS, insulin sensitivity index and GLP-1, or arginine-stimulated insulin release were not significantly different. CONCLUSIONS A combined risk allele score for eight known β-cell genes is associated with the rapid first-phase GSIS and the disposition index. The slower second-phase GSIS, GLP-1, and arginine-stimulated insulin secretion are not associated, suggesting that especially processes involved in rapid granule recruitment and exocytosis are affected in the majority of risk loci.


PLOS ONE | 2008

Novel Meta-Analysis-Derived Type 2 Diabetes Risk Loci Do Not Determine Prediabetic Phenotypes

Harald Staiger; Fausto Machicao; Konstantinos Kantartzis; Silke A. Schäfer; Kerstin Kirchhoff; Martina Guthoff; Günther Silbernagel; Norbert Stefan; Andreas Fritsche; Hans-Ulrich Häring

Background Genome-wide association (GWA) studies identified a series of novel type 2 diabetes risk loci. Most of them were subsequently demonstrated to affect insulin secretion of pancreatic β-cells. Very recently, a meta-analysis of GWA data revealed nine additional risk loci with still undefined roles in the pathogenesis of type 2 diabetes. Using our thoroughly phenotyped cohort of subjects at an increased risk for type 2 diabetes, we assessed the association of the nine latest genetic variants with the predominant prediabetes traits, i.e., obesity, impaired insulin secretion, and insulin resistance. Methodology/Principal Findings One thousand five hundred and seventy-eight metabolically characterized non-diabetic German subjects were genotyped for the reported candidate single nucleotide polymorphisms (SNPs) JAZF1 rs864745, CDC123/CAMK1D rs12779790, TSPAN8/LGR5 rs7961581, THADA rs7578597, ADAMTS9 rs4607103, NOTCH2 rs10923931, DCD rs1153188, VEGFA rs9472138, and BCL11A rs10490072. Insulin sensitivity was derived from fasting glucose and insulin concentrations, oral glucose tolerance test (OGTT), and hyperinsulinemic-euglycemic clamp. Insulin secretion was estimated from OGTT data. After appropriate adjustment for confounding variables and Bonferroni correction for multiple comparisons (corrected α-level: p = 0.0014), none of the SNPs was reliably associated with adiposity, insulin sensitivity, or insulin secretion (all p≥0.0117, dominant inheritance model). The risk alleles of ADAMTS9 SNP rs4607103 and VEGFA SNP rs9472138 tended to associate with more than one measure of insulin sensitivity and insulin secretion, respectively, but did not reach formal statistical significance. The study was sufficiently powered (1-β = 0.8) to detect effect sizes of 0.19≤d≤0.25 (α = 0.0014) and 0.13≤d≤0.16 (α = 0.05). Conclusions/Significance In contrast to the first series of GWA-derived type 2 diabetes candidate SNPs, we could not detect reliable associations of the novel risk loci with prediabetic phenotypes. Possible weak effects of ADAMTS9 SNP rs4607103 and VEGFA SNP rs9472138 on insulin sensitivity and insulin secretion, respectively, await further confirmation by larger studies.


Diabetologia | 2009

Insulin effects on beta and theta activity in the human brain are differentially affected by ageing

Otto Tschritter; Anita M. Hennige; Hubert Preissl; Yuko Grichisch; Kerstin Kirchhoff; Konstantinos Kantartzis; Fausto Machicao; Andreas Fritsche; Hu Häring

To the Editor: In peripheral tissues glucose uptake is established as a measure of insulin sensitivity, whereas the majority of glucose fluxes into the brain are insulin independent. However, at the level of neurons within the brain, insulin has been shown to modulate cell cycle, neurotransmitter production and electrical activity, and when insulin action fails, alterations in neuronal survival, food intake, body weight and determination of life-span occur. Based on these findings, insulin resistance of the brain is proposed to contribute to the development of obesity [1]. While peripheral insulin sensitivity is elevated in lean individuals, an increase in body weight impairs insulininduced glucose uptake into peripheral tissues in obese individuals, and there is a strong correlation between insulin sensitivity and ageing in various animal models and humans. It should be noted that this correlation is largely dependent on an increase in body weight and alterations in body composition rather than age [2]. Therefore, although insulin sensitivity in peripheral tissues certainly decreases in ageing individuals, it is highly likely that age is not a strong independent predictor of peripheral insulin sensitivity. Based on these data, the aim of the present study was to investigate whether the effects of insulin on distinct brain activation patterns are associated with age, independent of obesity and body fat mass, by using magnetoencephalography (MEG) measurements [3] to detect insulin-dependent alterations in cerebrocortical activity in humans. Cerebrocortical beta and theta activity was measured by MEG in 50 participants (26 men, 24 women; age 34±2 [20–61] years; BMI 27±1 [17–36] kg/m; mean±SE [range]) during a two-step euglycaemic–hyperinsulinaemic clamp [3]. All individuals took part in a saline experiment, and MEG data from the saline experiment were subtracted from the insulin experiment to eliminate non-insulin-derived variations. The study protocol was approved by the Ethics Committee of the University of Tübingen and all participants gave written informed consent prior to the study. To control for covariates, we used a multiple regression model with age, sex and BMI as independent variables. As expected, the multiple regression analysis revealed a significant negative correlation between peripheral insulin sensitivity and BMI (r=−0.64, p<0.001, Fig. 1b), but displayed no independent correlation with age (p=0.15, Diabetologia (2009) 52:169–171 DOI 10.1007/s00125-008-1187-5


Diabetologia | 2009

The risk allele load accelerates the age-dependent decline in beta cell function

Axel Haupt; Harald Staiger; Silke A. Schäfer; Kerstin Kirchhoff; Martina Guthoff; Fausto Machicao; Baptist Gallwitz; Norbert Stefan; Hu Häring; Andreas Fritsche

Aims/hypothesisAmong the novel type 2 diabetes risk loci identified by genome-wide association studies, TCF7L2, HHEX, SLC30A8 and CDKAL1 appear to affect beta cell function. In the present study we examined the effect of these genes’ risk alleles on the age-dependent decline in insulin secretion.MethodsThe SNPs rs7903146 (TCF7L2), rs7754840(CDKAL1), rs7923837 (HHEX) and rs13266634 (SLC30A8) were genotyped in 1,412 non-diabetic patients, who were subsequently grouped according to their number of risk alleles. All participants underwent an OGTT. Insulin secretion was assessed by validated indices and proinsulin conversion by calculating AUCproinsulin/AUCinsulin.ResultsThe number of risk alleles revealed a Gaussian distribution, with most participants carrying four risk alleles. Stratification into groups with low (LAL, up to three alleles), median (MAL, four alleles) and high (HAL, five to eight alleles) allele load resulted in MAL and HAL participants displaying significantly lower insulin secretion and proinsulin conversion than LAL participants (p ≤ 0.0014 and p = 0.0185, respectively). In the overall cohort, age was negatively associated with insulin secretion and proinsulin conversion (both p < 0.0001). MAL and HAL participants showed a significantly more pronounced decline in insulin secretion with increasing age than LAL participants (p ≤ 0.0325; analysis of covariance), and after stratification for BMI this relationship was maintained in obese, but not non-obese, participants. Proinsulin conversion decreased with increasing age in MAL and HAL, but not LAL, participants (p ≤ 0.0003 vs p = 0.2).Conclusions/interpretationThe risk allele load significantly accelerates the age-dependent decline in beta cell function, and this might be of particular importance in obese people.


Journal of diabetes science and technology | 2007

Impact of Different Fat Depots on Insulin Sensitivity: Predominant Role of Liver Fat

Kerstin Kirchhoff; Konstantinos Kantartzis; Jürgen Machann; Fritz Schick; Claus Thamer; Fausto Machicao; Andreas Fritsche; Hans-Ulrich Häring; Norbert Stefan

Background: Overall obesity and, as it is increasingly appreciated, body fat distribution and ectopic fat deposition in liver and skeletal muscle, determine insulin resistance in humans. However, little is known about the independence of these relationships. Therefore, we determined the impact of different fat depots as well as fat accumulation in ectopic tissues such as liver and skeletal muscle in the prediction of insulin resistance in healthy humans. Methods: Visceral and subcutaneous abdominal fat were determined by magnetic resonance (MR) tomography and liver fat and intramyocellular fat in the tibialis anterior muscle by 1H-MR spectroscopy in 220 subjects. Insulin sensitivity was estimated from the oral glucose tolerance test (OGTT) and measured by a euglycemic hyperinsulinemic clamp in a subgroup (n = 157). Results: Insulin sensitivity estimated from the OGTT correlated negatively with total body fat (r = −0.27, p < 0.0001), subcutaneous abdominal fat (r = −0.35, p < 0.0001), and visceral fat (r = −0.43, p < 0.0001). Furthermore, insulin sensitivity correlated negatively with liver fat (r = −0.53, p < 0.0001) and intramyocellular fat (r = −0.26, p < 0.0001). In multivariate regression models, high liver and visceral fat emerged as the strongest predictors of low insulin sensitivity. Conclusion: Among various fat compartments, high liver fat and high visceral fat are the strongest determinants of insulin sensitivity in humans.


The Journal of Clinical Endocrinology and Metabolism | 2009

The Inhibitory Effect of Recent Type 2 Diabetes Risk Loci on Insulin Secretion Is Modulated by Insulin Sensitivity

Axel Haupt; Martina Guthoff; Silke A. Schäfer; Kerstin Kirchhoff; Fausto Machicao; Baptist Gallwitz; Harald Staiger; Norbert Stefan; Andreas Fritsche; Hans-Ulrich Häring

CONTEXT/OBJECTIVE Recently novel type 2 diabetes risk loci were identified and reported to associate with beta-cell dysfunction. We assessed whether the risk alleles in TCF7L2, CDKAL1, HHEX, SLC30A8, IGF2BP2, CDKN2A/2B, JAZF1, and WFS1 reduce insulin secretion in an additive manner and whether their impact is influenced by insulin sensitivity. DESIGN/METHODS We genotyped 1397 nondiabetic subjects for the aforementioned risk alleles and performed risk allele summation. Participants underwent an oral glucose tolerance test and in a subgroup also an iv glucose tolerance test with C-peptide and insulin measurements. In our cohort, only polymorphisms in SLC30A8, HHEX, TCF7L2, and CDKAL1 influenced insulin secretion. So we tested only these polymorphisms and, in a separate analysis, all above-mentioned polymorphisms. RESULTS We observed a 28% decline in insulin secretion with increment of risk alleles (P <or= 0.0018). Subjects with two to four risk alleles displayed a progressive decline in ss-cell function, which was not further enhanced in carriers of five to seven alleles. After stratification for insulin sensitivity, subjects with low insulin sensitivity revealed a significant decline in insulin secretion with increment of risk alleles (P = 0.0086), whereas this was not seen in subjects with high insulin sensitivity (P = 0.07). The additional study with eight risk alleles provided similar results. CONCLUSIONS The negative effects of the risk alleles on ss-cell function appear additive in subjects with low insulin sensitivity but not in subjects with high insulin sensitivity. Effective compensatory mechanisms may exist in subjects with high insulin sensitivity that limit the impact of these genes.

Collaboration


Dive into the Kerstin Kirchhoff's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Axel Haupt

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge