Kevan M. Shokat
University of California, San Francisco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kevan M. Shokat.
Nature | 2010
Poulikos I. Poulikakos; Chao Zhang; Gideon Bollag; Kevan M. Shokat; Neal Rosen
Tumours with mutant BRAF are dependent on the RAF–MEK–ERK signalling pathway for their growth. We found that ATP-competitive RAF inhibitors inhibit ERK signalling in cells with mutant BRAF, but unexpectedly enhance signalling in cells with wild-type BRAF. Here we demonstrate the mechanistic basis for these findings. We used chemical genetic methods to show that drug-mediated transactivation of RAF dimers is responsible for paradoxical activation of the enzyme by inhibitors. Induction of ERK signalling requires direct binding of the drug to the ATP-binding site of one kinase of the dimer and is dependent on RAS activity. Drug binding to one member of RAF homodimers (CRAF–CRAF) or heterodimers (CRAF–BRAF) inhibits one protomer, but results in transactivation of the drug-free protomer. In BRAF(V600E) tumours, RAS is not activated, thus transactivation is minimal and ERK signalling is inhibited in cells exposed to RAF inhibitors. These results indicate that RAF inhibitors will be effective in tumours in which BRAF is mutated. Furthermore, because RAF inhibitors do not inhibit ERK signalling in other cells, the model predicts that they would have a higher therapeutic index and greater antitumour activity than mitogen-activated protein kinase (MEK) inhibitors, but could also cause toxicity due to MEK/ERK activation. These predictions have been borne out in a recent clinical trial of the RAF inhibitor PLX4032 (refs 4, 5). The model indicates that promotion of RAF dimerization by elevation of wild-type RAF expression or RAS activity could lead to drug resistance in mutant BRAF tumours. In agreement with this prediction, RAF inhibitors do not inhibit ERK signalling in cells that coexpress BRAF(V600E) and mutant RAS.
Cell | 2006
Zachary A. Knight; Beatriz González; Morri Feldman; Eli R. Zunder; David D. Goldenberg; Olusegun Williams; Robbie Loewith; David Stokoe; András Balla; Balázs Tóth; Tamas Balla; William A. Weiss; Roger Williams; Kevan M. Shokat
Phosphoinositide 3-kinases (PI3-Ks) are an important emerging class of drug targets, but the unique roles of PI3-K isoforms remain poorly defined. We describe here an approach to pharmacologically interrogate the PI3-K family. A chemically diverse panel of PI3-K inhibitors was synthesized, and their target selectivity was biochemically enumerated, revealing cryptic homologies across targets and chemotypes. Crystal structures of three inhibitors bound to p110gamma identify a conformationally mobile region that is uniquely exploited by selective compounds. This chemical array was then used to define the PI3-K isoforms required for insulin signaling. We find that p110alpha is the primary insulin-responsive PI3-K in cultured cells, whereas p110beta is dispensable but sets a phenotypic threshold for p110alpha activity. Compounds targeting p110alpha block the acute effects of insulin treatment in vivo, whereas a p110beta inhibitor has no effect. These results illustrate systematic target validation using a matrix of inhibitors that span a protein family.
PLOS Biology | 2009
Morris E. Feldman; Beth Apsel; Aino Uotila; Robbie Loewith; Zachary A. Knight; Davide Ruggero; Kevan M. Shokat
The mammalian target of rapamycin (mTOR) regulates cell growth and survival by integrating nutrient and hormonal signals. These signaling functions are distributed between at least two distinct mTOR protein complexes: mTORC1 and mTORC2. mTORC1 is sensitive to the selective inhibitor rapamycin and activated by growth factor stimulation via the canonical phosphoinositide 3-kinase (PI3K)→Akt→mTOR pathway. Activated mTORC1 kinase up-regulates protein synthesis by phosphorylating key regulators of mRNA translation. By contrast, mTORC2 is resistant to rapamycin. Genetic studies have suggested that mTORC2 may phosphorylate Akt at S473, one of two phosphorylation sites required for Akt activation; this has been controversial, in part because RNA interference and gene knockouts produce distinct Akt phospho-isoforms. The central role of mTOR in controlling key cellular growth and survival pathways has sparked interest in discovering mTOR inhibitors that bind to the ATP site and therefore target both mTORC2 and mTORC1. We investigated mTOR signaling in cells and animals with two novel and specific mTOR kinase domain inhibitors (TORKinibs). Unlike rapamycin, these TORKinibs (PP242 and PP30) inhibit mTORC2, and we use them to show that pharmacological inhibition of mTOR blocks the phosphorylation of Akt at S473 and prevents its full activation. Furthermore, we show that TORKinibs inhibit proliferation of primary cells more completely than rapamycin. Surprisingly, we find that mTORC2 is not the basis for this enhanced activity, and we show that the TORKinib PP242 is a more effective mTORC1 inhibitor than rapamycin. Importantly, at the molecular level, PP242 inhibits cap-dependent translation under conditions in which rapamycin has no effect. Our findings identify new functional features of mTORC1 that are resistant to rapamycin but are effectively targeted by TORKinibs. These potent new pharmacological agents complement rapamycin in the study of mTOR and its role in normal physiology and human disease.
Nature | 2000
Anthony C. Bishop; Jeffrey A. Ubersax; Dejah T. Petsch; Dina Matheos; Nathanael S. Gray; Justin D. Blethrow; Eiji Shimizu; Joe Z. Tsien; Peter G. Schultz; Mark D. Rose; John L. Wood; David O. Morgan; Kevan M. Shokat
Protein kinases have proved to be largely resistant to the design of highly specific inhibitors, even with the aid of combinatorial chemistry. The lack of these reagents has complicated efforts to assign specific signalling roles to individual kinases. Here we describe a chemical genetic strategy for sensitizing protein kinases to cell-permeable molecules that do not inhibit wild-type kinases. From two inhibitor scaffolds, we have identified potent and selective inhibitors for sensitized kinases from five distinct subfamilies. Tyrosine and serine/threonine kinases are equally amenable to this approach. We have analysed a budding yeast strain carrying an inhibitor-sensitive form of the cyclin-dependent kinase Cdc28 (CDK1) in place of the wild-type protein. Specific inhibition of Cdc28 in vivo caused a pre-mitotic cell-cycle arrest that is distinct from the G1 arrest typically observed in temperature-sensitive cdc28 mutants. The mutation that confers inhibitor-sensitivity is easily identifiable from primary sequence alignments. Thus, this approach can be used to systematically generate conditional alleles of protein kinases, allowing for rapid functional characterization of members of this important gene family.
Molecular Microbiology | 2001
Stephan Schauder; Kevan M. Shokat; Michael G. Surette; Bonnie L. Bassler
Many bacteria control gene expression in response to cell population density, and this phenomenon is called quorum sensing. In Gram‐negative bacteria, quorum sensing typically involves the production, release and detection of acylated homoserine lactone signalling molecules called autoinducers. Vibrio harveyi, a Gram‐negative bioluminescent marine bacterium, regulates light production in response to two distinct autoinducers (AI‐1 and AI‐2). AI‐1 is a homoserine lactone. The structure of AI‐2 is not known. We have suggested previously that V. harveyi uses AI‐1 for intraspecies communication and AI‐2 for interspecies communication. Consistent with this idea, we have shown that many species of Gram‐negative and Gram‐positive bacteria produce AI‐2 and, in every case, production of AI‐2 is dependent on the function encoded by the luxS gene. We show here that LuxS is the AI‐2 synthase and that AI‐2 is produced from S‐adenosylmethionine in three enzymatic steps. The substrate for LuxS is S‐ribosylhomocysteine, which is cleaved to form two products, one of which is homocysteine, and the other is AI‐2. In this report, we also provide evidence that the biosynthetic pathway and biochemical intermediates in AI‐2 biosynthesis are identical in Escherichia coli, Salmonella typhimurium, V. harveyi, Vibrio cholerae and Enterococcus faecalis. This result suggests that, unlike quorum sensing via the family of related homoserine lactone autoinducers, AI‐2 is a unique, ‘universal’ signal that could be used by a variety of bacteria for communication among and between species.
Nature | 2003
Jeffrey A. Ubersax; Erika L. Woodbury; Phuong Quang; Maria Paraz; Justin D. Blethrow; Kavita Shah; Kevan M. Shokat; David O. Morgan
The events of cell reproduction are governed by oscillations in the activities of cyclin-dependent kinases (Cdks). Cdks control the cell cycle by catalysing the transfer of phosphate from ATP to specific protein substrates. Despite their importance in cell-cycle control, few Cdk substrates have been identified. Here, we screened a budding yeast proteomic library for proteins that are directly phosphorylated by Cdk1 in whole-cell extracts. We identified about 200 Cdk1 substrates, several of which are phosphorylated in vivo in a Cdk1-dependent manner. The identities of these substrates reveal that Cdk1 employs a global regulatory strategy involving phosphorylation of other regulatory molecules as well as phosphorylation of the molecular machines that drive cell-cycle events. Detailed analysis of these substrates is likely to yield important insights into cell-cycle regulation.
Nature | 2007
Natalia Sergina; Megan Rausch; Donghui Wang; Jimmy Blair; Byron Hann; Kevan M. Shokat; Mark M. Moasser
Oncogenic tyrosine kinases have proved to be promising targets for the development of highly effective anticancer drugs. However, tyrosine kinase inhibitors (TKIs) against the human epidermal growth factor receptor (HER) family show only limited activity against HER2-driven breast cancers, despite effective inhibition of epidermal growth factor receptor (EGFR) and HER2 in vivo. The reasons for this are unclear. Signalling in trans is a key feature of this multimember family and the critically important phosphatidylinositol-3-OH kinase (PI(3)K)/Akt pathway is driven predominantly through transphosphorylation of the kinase-inactive HER3 (refs 9, 10). Here we show that HER3 and consequently PI(3)K/Akt signalling evade inhibition by current HER-family TKIs in vitro and in tumours in vivo. This is due to a compensatory shift in the HER3 phosphorylation–dephosphorylation equilibrium, driven by increased membrane HER3 expression driving the phosphorylation reaction and by reduced HER3 phosphatase activity impeding the dephosphorylation reaction. These compensatory changes are driven by Akt-mediated negative-feedback signalling. Although HER3 is not a direct target of TKIs, HER3 substrate resistance undermines their efficacy and has thus far gone undetected. The experimental abrogation of HER3 resistance by small interfering RNA knockdown restores potent pro-apoptotic activity to otherwise cytostatic HER TKIs, re-affirming the oncogene-addicted nature of HER2-driven tumours and the therapeutic promise of this oncoprotein target. However, because HER3 signalling is buffered against an incomplete inhibition of HER2 kinase, much more potent TKIs or combination strategies are required to silence oncogenic HER2 signalling effectively. The biologic marker with which to assess the efficacy of HER TKIs should be the transphosphorylation of HER3 rather than autophosphorylation.
Nature | 2012
Andrew C. Hsieh; Yi Liu; Merritt P. Edlind; Nicholas T. Ingolia; Matthew R. Janes; Annie Sher; Evan Y. Shi; Craig R. Stumpf; Carly Christensen; Michael J. Bonham; Shunyou Wang; Pingda Ren; Michael Martin; Katti Jessen; Morris E. Feldman; Jonathan S. Weissman; Kevan M. Shokat; Christian Rommel; Davide Ruggero
The mammalian target of rapamycin (mTOR) kinase is a master regulator of protein synthesis that couples nutrient sensing to cell growth and cancer. However, the downstream translationally regulated nodes of gene expression that may direct cancer development are poorly characterized. Using ribosome profiling, we uncover specialized translation of the prostate cancer genome by oncogenic mTOR signalling, revealing a remarkably specific repertoire of genes involved in cell proliferation, metabolism and invasion. We extend these findings by functionally characterizing a class of translationally controlled pro-invasion messenger RNAs that we show direct prostate cancer invasion and metastasis downstream of oncogenic mTOR signalling. Furthermore, we develop a clinically relevant ATP site inhibitor of mTOR, INK128, which reprograms this gene expression signature with therapeutic benefit for prostate cancer metastasis, for which there is presently no cure. Together, these findings extend our understanding of how the ‘cancerous’ translation machinery steers specific cancer cell behaviours, including metastasis, and may be therapeutically targeted.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Stephan Sauer; Ludovica Bruno; Arnulf Hertweck; David K. Finlay; Marion Leleu; Mikhail Spivakov; Zachary A. Knight; Bradley S. Cobb; Doreen A. Cantrell; Eric O'Connor; Kevan M. Shokat; Amanda G. Fisher; Matthias Merkenschlager
Regulatory T (Treg) cells safeguard against autoimmunity and immune pathology. Because determinants of the Treg cell fate are not completely understood, we have delineated signaling events that control the de novo expression of Foxp3 in naive peripheral CD4 T cells and in thymocytes. We report that premature termination of TCR signaling and inibition of phosphatidyl inositol 3-kinase (PI3K) p110α, p110δ, protein kinase B (Akt), or mammalian target of rapamycin (mTOR) conferred Foxp3 expression and Treg-like gene expression profiles. Conversely, continued TCR signaling and constitutive PI3K/Akt/mTOR activity antagonised Foxp3 induction. At the chromatin level, di- and trimethylation of lysine 4 of histone H3 (H3K4me2 and -3) near the Foxp3 transcription start site (TSS) and within the 5′ untranslated region (UTR) preceded active Foxp3 expression and, like Foxp3 inducibility, was lost upon continued TCR stimulation. These data demonstrate that the PI3K/Akt/mTOR signaling network regulates Foxp3 expression.
Nature | 2013
Jonathan M. Ostrem; Ulf Peters; Martin L. Sos; James A. Wells; Kevan M. Shokat
Somatic mutations in the small GTPase K-Ras are the most common activating lesions found in human cancer, and are generally associated with poor response to standard therapies. Efforts to target this oncogene directly have faced difficulties owing to its picomolar affinity for GTP/GDP and the absence of known allosteric regulatory sites. Oncogenic mutations result in functional activation of Ras family proteins by impairing GTP hydrolysis. With diminished regulation by GTPase activity, the nucleotide state of Ras becomes more dependent on relative nucleotide affinity and concentration. This gives GTP an advantage over GDP and increases the proportion of active GTP-bound Ras. Here we report the development of small molecules that irreversibly bind to a common oncogenic mutant, K-Ras(G12C). These compounds rely on the mutant cysteine for binding and therefore do not affect the wild-type protein. Crystallographic studies reveal the formation of a new pocket that is not apparent in previous structures of Ras, beneath the effector binding switch-II region. Binding of these inhibitors to K-Ras(G12C) disrupts both switch-I and switch-II, subverting the native nucleotide preference to favour GDP over GTP and impairing binding to Raf. Our data provide structure-based validation of a new allosteric regulatory site on Ras that is targetable in a mutant-specific manner.