Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Khandker N. Quader is active.

Publication


Featured researches published by Khandker N. Quader.


international solid-state circuits conference | 2013

A 130.7mm 2 2-layer 32Gb ReRAM memory device in 24nm technology

Tz-yi Liu; Tian Hong Yan; Roy E. Scheuerlein; Yingchang Chen; Jeffrey Koon Yee Lee; Gopinath Balakrishnan; Gordon Yee; Henry Zhang; Alex Yap; Jingwen Ouyang; Takahiko Sasaki; Sravanti Addepalli; Ali Al-Shamma; Chin-Yu Chen; Mayank Gupta; Greg Hilton; Saurabh Joshi; Achal Kathuria; Vincent Lai; Deep Masiwal; Masahide Matsumoto; Anurag Nigam; Anil Pai; Jayesh Pakhale; Chang Hua Siau; Xiaoxia Wu; Ronald Yin; Liping Peng; Jang Yong Kang; Sharon Huynh

ReRAM has been considered as one of the potential technologies for the next-generation nonvolatile memory, given its fast access speed, high reliability, and multi-level capability. Multiple-layered architectures have been used for several megabit test-chips and memory macros [1-3]. This paper presents a MeOx-based 32Gb ReRAM test chip developed in 24nm technology.


IEEE Journal of Solid-state Circuits | 2009

A 34 MB/s MLC Write Throughput 16 Gb NAND With All Bit Line Architecture on 56 nm Technology

Raul-Adrian Cernea; Long Pham; Farookh Moogat; Siu Chan; Binh Le; Yan Li; Shouchang Tsao; Tai-Yuan Tseng; Khanh Nguyen; Jason Li; Jayson Hu; Jong Hak Yuh; Cynthia Hsu; Fanglin Zhang; Teruhiko Kamei; Hiroaki Nasu; Phil Kliza; Khin Htoo; Jeffrey W. Lutze; Yingda Dong; Masaaki Higashitani; Junnhui Yang; Hung-Szu Lin; Vamshi Sakhamuri; Alan Li; Feng Pan; Sridhar Yadala; Subodh Taigor; Kishan Pradhan; James Lan

A 16 Gb 4-state MLC NAND flash memory augments the sustained program throughput to 34 MB/s by fully exercising all the available cells along a selected word line and by using additional performance enhancement modes. The same chip operating as an 8 Gb SLC device guarantees over 60 MB/s programming throughput. The newly introduced all bit line (ABL) architecture has multiple advantages when higher performance is targeted and it was made possible by adopting the ldquocurrent sensingrdquo (as opposed to the mainstream ldquovoltage sensingrdquo) technique. The general chip architecture is presented in contrast to a state of the art conventional circuit and a double size data buffer is found to be necessary for the maximum parallelism attained. Further conceptual changes designed to counterbalance the area increase are presented, hierarchical column architecture being of foremost importance. Optimization of other circuits, such as the charge pump, is another example. Fast data access rate is essential, and ways of boosting it are described, including a new redundancy scheme. ABL contribution to energy saving is also acknowledged.


IEEE Computer | 2013

NAND Flash Memory: Challenges and Opportunities

Yan Li; Khandker N. Quader

NAND flash offers a range of compelling benefits that will keep attracting mobile and enterprise application developers as engineers tackle the hard problems of scaling the technology to sub-20 nm.


international solid-state circuits conference | 2012

128Gb 3b/cell NAND flash memory in 19nm technology with 18MB/s write rate and 400Mb/s toggle mode

Yan Li; Seungpil Lee; Ken Oowada; Hao Nguyen; Qui Nguyen; Nima Mokhlesi; Cynthia Hsu; Jason Li; Venky Ramachandra; Teruhiko Kamei; Masaaki Higashitani; Tuan Pham; Mitsuaki Honma; Yoshihisa Watanabe; Kazumi Ino; Binh Le; Byungki Woo; Khin Htoo; Tai-Yuan Tseng; Long Pham; Frank Tsai; Kwang-ho Kim; Yi-Chieh Chen; Min She; Jong Yuh; Alex Chu; Chen Chen; Ruchi Puri; Hung-Szu Lin; Yi-Fang Chen

This paper addresses challenges with improvements made over previous NAND generations to achieve high performance while maintaining a low fail-bit count (FBC) and cost savings from an improved architecture and tightly packed peripheral circuits. Air gap [2,3] technology further improves write throughput by reducing neighbor interference and WL RC. A toggle mode 400Mb/s I/O interface reduces system overhead and enhances overall performance.


international solid-state circuits conference | 2008

A 34MB/s-Program-Throughput 16Gb MLC NAND with All-Bitline Architecture in 56nm

Raul-Adrian Cernea; Long Pham; Farookh Moogat; Siu Chan; Binh Le; Yan Li; Shouchang Tsao; Tai-Yuan Tseng; Khanh Nguyen; Jason Li; J. Hu; Jong Park; Cynthia Hsu; Fanglin Zhang; Teruhiko Kamei; Hiroaki Nasu; Phil Kliza; Khin Htoo; Jeffrey W. Lutze; Yingda Dong; Masaaki Higashitani; Junhui Yang; Hung-Szu Lin; Vamshi Sakhamuri; A. Li; Feng Pan; Sridhar Yadala; Subodh Taigor; Kishan Pradhan; James Lan

In the diverse world of NAND flash applications, higher storage capacity is not the only imperative. Increasingly, performance is a differentiating factor and is also a way of creating new markets or expanding existing markets. While conventional memory uses, for actual operations, every other cell along a selected word line (WL) (Takeuchi, 2006), this design simultaneously exercises them all. A performance improvement of at least 100% is derived from this all-bitline (ABL) architecture relative to conventional chips. Additional techniques push performance to even higher levels.


Archive | 2002

Operating techniques for reducing effects of coupling between storage elements of a non-volatile memory operated in multiple data states

Jian Chen; Tomoharu Tanaka; Yupin Fong; Khandker N. Quader


Archive | 2002

Techniques for reducing effects of coupling between storage elements of adjacent rows of memory cells

Raul-Adrian Cernea; Khandker N. Quader; Yan Li; Jian Chen; Yupin Fong


Archive | 2002

Multi-state nonvolatile memory capable of reducing effects of coupling between storage elements

Jian Chen; Tomoharu Tanaka; Yupin Fong; Khandker N. Quader


Archive | 2005

Method of reducing disturbs in non-volatile memory

Daniel C. Guterman; George Samachisa; Brian Murphy; Chi-Ming Wang; Khandker N. Quader


Archive | 2002

Method and system for programming and inhibiting multi-level, non-volatile memory cells

Khandker N. Quader; Khanh Nguyen; Feng Pan; Long C. Pham; Alexander K. Mak

Collaboration


Dive into the Khandker N. Quader's collaboration.

Researchain Logo
Decentralizing Knowledge