Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kimberly A. Dowd is active.

Publication


Featured researches published by Kimberly A. Dowd.


Gastroenterology | 2010

Spontaneous Control of Primary Hepatitis C Virus Infection and Immunity against Persistent Reinfection

William O. Osburn; Brian E. Fisher; Kimberly A. Dowd; Giselle Urban; Lin Liu; Stuart C. Ray; David L. Thomas; Andrea L. Cox

BACKGROUND & AIMS We followed patients with ongoing hepatitis C virus (HCV) exposure following control of an initial HCV infection to determine whether primary control conferred protection against future persistent infections. METHODS Twenty-two active injection drug users (IDU) who had cleared a primary hepatitis C viremia for at least 60 days were monitored monthly. Reinfection was defined as the detection of a new HCV infection. Protection was assessed based on the magnitude and duration of viremia following reinfection and generation of T-cell and neutralizing antibody (nAb) responses. RESULTS Reinfection occurred in 11 IDU (50%) who previously spontaneously controlled primary HCV infection. Although viral clearance occurs in approximately 25% of patients with primary infections, spontaneous viral clearance was observed in 83% of reinfected patients. The duration and maximum level of viremia during subsequent episodes of reinfection were significantly decreased compared with those of the primary infection in the same subjects. In contrast to chronic infection, reinfection was associated with a significant increase in the breadth of T-cell responses. During acute infection, nAbs against heterologous viral pseudoparticles were detected in 60% of reinfected subjects; cross-reactive nAbs are rarely detected in patients who progress to chronic infection. CONCLUSIONS HCV reinfection is associated with a reduction in the magnitude and duration of viremia (compared with the initial infection), broadened cellular immune responses, and generation of cross-reactive humoral responses. These findings are consistent with development of adaptive immunity that is not sterilizing but protects against chronic disease.


Journal of Virology | 2010

Structure and Function Analysis of Therapeutic Monoclonal Antibodies against Dengue Virus Type 2

Soila Sukupolvi-Petty; S. Kyle Austin; Michael Engle; James D. Brien; Kimberly A. Dowd; Katherine L. Williams; Syd Johnson; Rebeca Rico-Hesse; Eva Harris; Theodore C. Pierson; Daved H. Fremont; Michael S. Diamond

ABSTRACT Dengue virus (DENV) is the most prevalent insect-transmitted viral disease in humans globally, and currently no specific therapy or vaccine is available. Protection against DENV and other related flaviviruses is associated with the development of antibodies against the viral envelope (E) protein. Although prior studies have characterized the neutralizing activity of monoclonal antibodies (MAbs) against DENV type 2 (DENV-2), none have compared simultaneously the inhibitory activity against a genetically diverse range of strains in vitro, the protective capacity in animals, and the localization of epitopes. Here, with the goal of identifying MAbs that can serve as postexposure therapy, we investigated in detail the functional activity of a large panel of new anti-DENV-2 mouse MAbs. Binding sites were mapped by yeast surface display and neutralization escape, cell culture inhibition assays were performed with homologous and heterologous strains, and prophylactic and therapeutic activity was evaluated with two mouse models. Protective MAbs localized to epitopes on the lateral ridge of domain I (DI), the dimer interface, lateral ridge, and fusion loop of DII, and the lateral ridge, C-C′ loop, and A strand of DIII. Several MAbs inefficiently inhibited at least one DENV-2 strain of a distinct genotype, suggesting that recognition of neutralizing epitopes varies with strain diversity. Moreover, antibody potency generally correlated with a narrowed genotype and serotype specificity. Five MAbs functioned efficiently as postexposure therapy when administered as a single dose, even 3 days after intracranial infection of BALB/c mice. Overall, these studies define the structural and functional complexity of antibodies against DENV-2 with protective potential.


Gastroenterology | 2009

Selection pressure from neutralizing antibodies drives sequence evolution during acute infection with hepatitis C virus.

Kimberly A. Dowd; Dale Netski; Xiao Hong Wang; Andrea L. Cox; Stuart C. Ray

BACKGROUND & AIMS Despite recent characterization of hepatitis C virus-specific neutralizing antibodies, it is not clear to what extent immune pressure from neutralizing antibodies drives viral sequence evolution in vivo. This lack of understanding is particularly evident in acute infection, the phase when elimination or persistence of viral replication is determined and during which the importance of the humoral immune response has been largely discounted. METHODS We analyzed envelope glycoprotein sequence evolution and neutralization of sequential autologous hepatitis C virus pseudoparticles in 8 individuals throughout acute infection. RESULTS Amino acid substitutions occurred throughout the envelope genes, primarily within the hypervariable region 1 of E2. When individualized pseudoparticles expressing sequential envelope sequences were used to measure neutralization by autologous sera, antibodies neutralizing earlier sequence variants were detected at earlier time points than antibodies neutralizing later variants, indicating clearance and evolution of viral variants in response to pressure from neutralizing antibodies. To demonstrate the effects of amino acid substitution on neutralization, site-directed mutagenesis of a pseudoparticle envelope sequence revealed amino acid substitutions in hypervariable region 1 that were responsible for a dramatic decrease in neutralization sensitivity over time. In addition, high-titer neutralizing antibodies peaked at the time of viral clearance in all spontaneous resolvers, whereas chronically evolving subjects displayed low-titer or absent neutralizing antibodies throughout early acute infection. CONCLUSIONS These findings indicate that, during acute hepatitis C virus infection in vivo, virus-specific neutralizing antibodies drive sequence evolution and, in some individuals, play a role in determining the outcome of infection.


Science | 2016

Rapid development of a DNA vaccine for Zika virus

Kimberly A. Dowd; Sung-Youl Ko; Kaitlyn M. Morabito; Eun Sung Yang; Rebecca S. Pelc; Christina R. DeMaso; Leda R. Castilho; Peter Abbink; Michael Boyd; Ramya Nityanandam; David N. Gordon; John R. Gallagher; Xuejun Chen; John-Paul Todd; Yaroslav Tsybovsky; Audray K. Harris; Yan-Jang S. Huang; Stephen Higgs; Dana L. Vanlandingham; Hanne Andersen; Mark G. Lewis; Rafael De La Barrera; Kenneth H. Eckels; Richard G. Jarman; Martha Nason; Dan H. Barouch; Mario Roederer; Wing-Pui Kong; John R. Mascola; Theodore C. Pierson

A DNA vaccine candidate for Zika The ongoing Zika epidemic in the Americas and the Caribbean urgently needs a protective vaccine. Two DNA vaccines composed of the genes that encode the structural premembrane and envelope proteins of Zika virus have been tested in monkeys. Dowd et al. show that two doses of vaccine given intramuscularly completely protected 17 of 18 animals against Zika virus challenge. A single low dose of vaccine was not protective but did reduce viral loads. Protection correlated with serum antibody neutralizing activity. Phase I clinical trials testing these vaccines are already ongoing. Science, this issue p. 237 DNA-vaccine–induced neutralizing antibodies largely protect monkeys after experimental challenge by virus infection. Zika virus (ZIKV) was identified as a cause of congenital disease during the explosive outbreak in the Americas and Caribbean that began in 2015. Because of the ongoing fetal risk from endemic disease and travel-related exposures, a vaccine to prevent viremia in women of childbearing age and their partners is imperative. We found that vaccination with DNA expressing the premembrane and envelope proteins of ZIKV was immunogenic in mice and nonhuman primates, and protection against viremia after ZIKV challenge correlated with serum neutralizing activity. These data not only indicate that DNA vaccination could be a successful approach to protect against ZIKV infection, but also suggest a protective threshold of vaccine-induced neutralizing activity that prevents viremia after acute infection.


Nature | 2017

Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination

Norbert Pardi; Michael J. Hogan; Rebecca S. Pelc; Hiromi Muramatsu; Hanne Andersen; Christina R. DeMaso; Kimberly A. Dowd; Laura L. Sutherland; Richard M. Scearce; Robert Parks; Wendeline Wagner; Alex Granados; Jack Greenhouse; Michelle Walker; Elinor Willis; Jae-Sung Yu; Charles E. McGee; Gregory D. Sempowski; Barbara L. Mui; Ying K. Tam; Yan-Jang Huang; Dana L. Vanlandingham; Veronica M. Holmes; Harikrishnan Balachandran; Sujata Sahu; Michelle A. Lifton; Stephen Higgs; Scott E. Hensley; Thomas D. Madden; Michael J. Hope

Zika virus (ZIKV) has recently emerged as a pandemic associated with severe neuropathology in newborns and adults. There are no ZIKV-specific treatments or preventatives. Therefore, the development of a safe and effective vaccine is a high priority. Messenger RNA (mRNA) has emerged as a versatile and highly effective platform to deliver vaccine antigens and therapeutic proteins. Here we demonstrate that a single low-dose intradermal immunization with lipid-nanoparticle-encapsulated nucleoside-modified mRNA (mRNA–LNP) encoding the pre-membrane and envelope glycoproteins of a strain from the ZIKV outbreak in 2013 elicited potent and durable neutralizing antibody responses in mice and non-human primates. Immunization with 30 μg of nucleoside-modified ZIKV mRNA–LNP protected mice against ZIKV challenges at 2 weeks or 5 months after vaccination, and a single dose of 50 μg was sufficient to protect non-human primates against a challenge at 5 weeks after vaccination. These data demonstrate that nucleoside-modified mRNA–LNP elicits rapid and durable protective immunity and therefore represents a new and promising vaccine candidate for the global fight against ZIKV.


Cell | 2017

Modified mRNA vaccines protect against Zika virus infection

Justin M. Richner; Sunny Himansu; Kimberly A. Dowd; Scott L. Butler; Vanessa Salazar; Julie M. Fox; Justin G. Julander; William W. Tang; Sujan Shresta; Theodore C. Pierson; Giuseppe Ciaramella; Michael S. Diamond

The emergence of ZIKV infection has prompted a global effort to develop safe and effective vaccines. We engineered a lipid nanoparticle (LNP) encapsulated modified mRNA vaccine encoding wild-type or variant ZIKV structural genes and tested immunogenicity and protection in mice. Two doses of modified mRNA LNPs encoding prM-E genes that produced virus-like particles resulted in high neutralizing antibody titers (∼1/100,000) that protected against ZIKV infection and conferred sterilizing immunity. To offset a theoretical concern of ZIKV vaccines inducing antibodies that cross-react with the related dengue virus (DENV), we designed modified prM-E RNA encoding mutations destroying the conserved fusion-loop epitope in the E protein. This variant protected against ZIKV and diminished production of antibodies enhancing DENV infection in cells or mice. A modified mRNA vaccine can prevent ZIKV disease and be adapted to reduce the risk of sensitizing individuals to subsequent exposure to DENV, should this become a clinically relevant concern.


PLOS Pathogens | 2013

Development of a Highly Protective Combination Monoclonal Antibody Therapy against Chikungunya Virus

Pankaj Pal; Kimberly A. Dowd; James D. Brien; Melissa A. Edeling; Sergey Gorlatov; Syd Johnson; Iris Lee; Wataru Akahata; Gary J. Nabel; Mareike K. S. Richter; Jolanda M. Smit; Daved H. Fremont; Theodore C. Pierson; Mark T. Heise; Michael S. Diamond

Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes global epidemics of a debilitating polyarthritis in humans. As there is a pressing need for the development of therapeutic agents, we screened 230 new mouse anti-CHIKV monoclonal antibodies (MAbs) for their ability to inhibit infection of all three CHIKV genotypes. Four of 36 neutralizing MAbs (CHK-102, CHK-152, CHK-166, and CHK-263) provided complete protection against lethality as prophylaxis in highly susceptible immunocompromised mice lacking the type I IFN receptor (Ifnar−/−) and mapped to distinct epitopes on the E1 and E2 structural proteins. CHK-152, the most protective MAb, was humanized, shown to block viral fusion, and require Fc effector function for optimal activity in vivo. In post-exposure therapeutic trials, administration of a single dose of a combination of two neutralizing MAbs (CHK-102+CHK-152 or CHK-166+CHK-152) limited the development of resistance and protected immunocompromised mice against disease when given 24 to 36 hours before CHIKV-induced death. Selected pairs of highly neutralizing MAbs may be a promising treatment option for CHIKV in humans.


The Lancet | 2014

Safety and tolerability of chikungunya virus-like particle vaccine in healthy adults: a phase 1 dose-escalation trial

Lee Jah Chang; Kimberly A. Dowd; Floreliz Mendoza; Jamie G. Saunders; Sandra Sitar; Sarah Plummer; Galina Yamshchikov; Uzma N. Sarwar; Zonghui Hu; Mary E. Enama; Robert T. Bailer; Richard A. Koup; Richard M. Schwartz; Wataru Akahata; Gary J. Nabel; John R. Mascola; Theodore C. Pierson; Barney S. Graham; Julie E. Ledgerwood

BACKGROUND Chikungunya virus--a mosquito-borne alphavirus--is endemic in Africa and south and southeast Asia and has recently emerged in the Caribbean. No drugs or vaccines are available for treatment or prevention. We aimed to assess the safety, tolerability, and immunogenicity of a new candidate vaccine. METHODS VRC 311 was a phase 1, dose-escalation, open-label clinical trial of a virus-like particle (VLP) chikungunya virus vaccine, VRC-CHKVLP059-00-VP, in healthy adults aged 18-50 years who were enrolled at the National Institutes of Health Clinical Center (Bethesda, MD, USA). Participants were assigned to sequential dose level groups to receive vaccinations at 10 μg, 20 μg, or 40 μg on weeks 0, 4, and 20, with follow-up for 44 weeks after enrolment. The primary endpoints were safety and tolerability of the vaccine. Secondary endpoints were chikungunya virus-specific immune responses assessed by ELISA and neutralising antibody assays. This trial is registered with ClinicalTrials.gov, NCT01489358. FINDINGS 25 participants were enrolled from Dec 12, 2011, to March 22, 2012, into the three dosage groups: 10 μg (n=5), 20 μg (n=10), and 40 μg (n=10). The protocol was completed by all five participants at the 10 μg dose, all ten participants at the 20 μg dose, and eight of ten participants at the 40 μg dose; non-completions were for personal circumstances unrelated to adverse events. 73 vaccinations were administered. All injections were well tolerated, with no serious adverse events reported. Neutralising antibodies were detected in all dose groups after the second vaccination (geometric mean titres of the half maximum inhibitory concentration: 2688 in the 10 μg group, 1775 in the 20 μg group, and 7246 in the 40 μg group), and a significant boost occurred after the third vaccination in all dose groups (10 μg group p=0·0197, 20 μg group p<0·0001, and 40 μg group p<0·0001). 4 weeks after the third vaccination, the geometric mean titres of the half maximum inhibitory concentration were 8745 for the 10 μg group, 4525 for the 20 μg group, and 5390 for the 40 μg group. INTERPRETATION The chikungunya VLP vaccine was immunogenic, safe, and well tolerated. This study represents an important step in vaccine development to combat this rapidly emerging pathogen. Further studies should be done in a larger number of participants and in more diverse populations. FUNDING Intramural Research Program of the Vaccine Research Center, National Institute of Allergy and Infectious Diseases, and National Institutes of Health.


PLOS Pathogens | 2011

A dynamic landscape for antibody binding modulates antibody-mediated neutralization of West Nile virus.

Kimberly A. Dowd; Christiane A. Jost; Anna P. Durbin; Stephen S. Whitehead; Theodore C. Pierson

Neutralizing antibodies are a significant component of the hosts protective response against flavivirus infection. Neutralization of flaviviruses occurs when individual virions are engaged by antibodies with a stoichiometry that exceeds a required threshold. From this “multiple-hit” perspective, the neutralizing activity of antibodies is governed by the affinity with which it binds its epitope and the number of times this determinant is displayed on the surface of the virion. In this study, we investigated time-dependent changes in the fate of West Nile virus (WNV) decorated with antibody in solution. Experiments with the well-characterized neutralizing monoclonal antibody (MAb) E16 revealed a significant increase in neutralization activity over time that could not be explained by the kinetics of antibody binding, virion aggregation, or the action of complement. Additional kinetic experiments using the fusion-loop specific MAb E53, which has limited neutralizing activity because it recognizes a relatively inaccessible epitope on mature virions, identified a role of virus “breathing” in regulating neutralization activity. Remarkably, MAb E53 neutralized mature WNV in a time- and temperature-dependent manner. This phenomenon was confirmed in studies with a large panel of MAbs specific for epitopes in each domain of the WNV envelope protein, with sera from recipients of a live attenuated WNV vaccine, and in experiments with dengue virus. Given enough time, significant inhibition of infection was observed even for antibodies with very limited, or no neutralizing activity in standard neutralization assays. Together, our data suggests that the structural dynamics of flaviviruses impacts antibody-mediated neutralization via exposure of otherwise inaccessible epitopes, allowing for antibodies to dock on the virion with a stoichiometry sufficient for neutralization.


Journal of Immunology | 2008

High-Programmed Death-1 Levels on Hepatitis C Virus-Specific T Cells during Acute Infection Are Associated with Viral Persistence and Require Preservation of Cognate Antigen during Chronic Infection

Alleluiah Rutebemberwa; Stuart C. Ray; Jacqueline Astemborski; Jordana Levine; Lin Liu; Kimberly A. Dowd; Shalyn Catherine Clute; Changyu Wang; Alan J. Korman; Alessandro Sette; John Sidney; Drew M. Pardoll; Andrea L. Cox

Hepatitis C virus (HCV) is an important human pathogen that represents a model for chronic infection given that the majority of infected individuals fail to clear the infection despite generation of virus-specific T cell responses during the period of acute infection. Although viral sequence evolution at targeted MHC class I-restricted epitopes represents one mechanism for immune escape in HCV, many targeted epitopes remain intact under circumstances of viral persistence. To explore alternative mechanisms of HCV immune evasion, we analyzed patterns of expression of a major inhibitory receptor on T cells, programmed death-1 (PD-1), from the time of initial infection and correlated these with HCV RNA levels, outcome of infection, and sequence escape within the targeted epitope. We show that the level of PD-1 expression in early HCV infection is significantly higher on HCV-specific T cells from subjects who progress to chronic HCV infection than from those who clear infection. This correlation is independent of HCV RNA levels, compatible with the notion that high PD-1 expression on HCV-specific CD8 T cells during acute infection inhibits viral clearance. Viral escape during persistent infection is associated with reduction in PD-1 levels on the surface of HCV-specific T cells, supporting the necessity of ongoing antigenic stimulation of T cells for maintenance of PD-1 expression. These results support the idea that PD-1 expression on T cells specific for nonescaped epitopes contributes to viral persistence and suggest that PD-1 blockade may alter the outcome of HCV infection.

Collaboration


Dive into the Kimberly A. Dowd's collaboration.

Top Co-Authors

Avatar

Theodore C. Pierson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Michael S. Diamond

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Stuart C. Ray

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Swati Mukherjee

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Daved H. Fremont

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Christina R. DeMaso

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

John R. Mascola

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Julie E. Ledgerwood

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Rebecca S. Pelc

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge