Kimberly Lapham
Pfizer
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kimberly Lapham.
ACS Medicinal Chemistry Letters | 2014
Samit Kumar Bhattacharya; Kim M. Andrews; Ramsay E. Beveridge; Kimberly O'keefe Cameron; Chiliu Chen; Matthew Dunn; Dilinie P. Fernando; Hua Gao; David Hepworth; V. Margaret Jackson; Vishal Khot; Jimmy Kong; Rachel Kosa; Kimberly Lapham; Paula M. Loria; Allyn T. Londregan; Kim F. McClure; Suvi T. M. Orr; Jigna Patel; Colin R. Rose; James Saenz; Ingrid A. Stock; Gregory Storer; Maria A. Vanvolkenburg; Derek Vrieze; Guoqiang Wang; Jun Xiao; Yingxin Zhang
The identification of potent, highly selective orally bioavailable ghrelin receptor inverse agonists from a spiro-azetidino-piperidine series is described. Examples from this series have promising in vivo pharmacokinetics and increase glucose-stimulated insulin secretion in human whole and dispersed islets. A physicochemistry-based strategy to increase lipophilic efficiency for ghrelin receptor potency and retain low clearance and satisfactory permeability while reducing off-target pharmacology led to the discovery of 16h. Compound 16h has a superior balance of ghrelin receptor pharmacology and off-target selectivity. On the basis of its promising pharmacological and safety profile, 16h was advanced to human clinical trials.
Bioorganic & Medicinal Chemistry Letters | 2013
Kim F. McClure; Margaret Jackson; Kimberly O'keefe Cameron; Daniel W. Kung; David Austen Perry; Suvi T. M. Orr; Yingxin Zhang; Jeffrey T. Kohrt; Meihua Tu; Hua Gao; Dilinie P. Fernando; Ryan Jones; Noe Erasga; Guoqiang Wang; Jana Polivkova; Wenhua Jiao; Roger Swartz; Hirokazu Ueno; Samit Kumar Bhattacharya; Ingrid A. Stock; Sam Varma; Victoria Bagdasarian; Sylvie Perez; Dawn Kelly-Sullivan; Ruduan Wang; Jimmy Kong; Peter Cornelius; Laura Michael; Eunsun Lee; Ann M. Janssen
The optimization for selectivity and central receptor occupancy for a series of spirocyclic azetidine-piperidine inverse agonists of the ghrelin receptor is described. Decreased mAChR muscarinic M2 binding was achieved by use of a chiral indane in place of a substituted benzylic group. Compounds with desirable balance of human in vitro clearance and ex vivo central receptor occupancy were discovered by incorporation of heterocycles. Specifically, heteroaryl rings with nitrogen(s) vicinal to the indane linkage provided the most attractive overall properties.
British Journal of Pharmacology | 2016
Jimmy Kong; J Chuddy; Ingrid A. Stock; Paula M. Loria; S V Straub; C Vage; Kimberly O'keefe Cameron; Syamal K. Bhattacharya; Kimberly Lapham; Kim F. McClure; Yingxin Zhang; V M Jackson
Ghrelin increases growth hormone secretion, gastric acid secretion, gastric motility and hunger but decreases glucose‐dependent insulin secretion and insulin sensitivity in humans. Antagonizing the ghrelin receptor has potential as a therapeutic approach in the treatment of obesity and type 2 diabetes. Therefore, the aim was to pharmacologically characterize the novel small‐molecule antagonist PF‐05190457 and assess translational pharmacology ex vivo.
Journal of Medicinal Chemistry | 2017
Christopher Ryan Butler; Kevin Ogilvie; Luis Martinez-Alsina; Gabriela Barreiro; Elizabeth Mary Beck; Charles E. Nolan; Kevin Atchison; Eric Benvenuti; Leanne M. Buzon; Shawn D. Doran; Cathleen Gonzales; Christopher John Helal; Xinjun Hou; Mei-Hui Hsu; Eric F. Johnson; Kimberly Lapham; Lorraine Lanyon; Kevin D. Parris; Brian T. O’Neill; David Riddell; Ashley Robshaw; Felix Vajdos; Michael Aaron Brodney
A growing subset of β-secretase (BACE1) inhibitors for the treatment of Alzheimer’s disease (AD) utilizes an anilide chemotype that engages a key residue (Gly230) in the BACE1 binding site. Although the anilide moiety affords excellent potency, it simultaneously introduces a third hydrogen bond donor that limits brain availability and provides a potential metabolic site leading to the formation of an aniline, a structural motif of prospective safety concern. We report herein an alternative aminomethyl linker that delivers similar potency and improved brain penetration relative to the amide moiety. Optimization of this series identified analogues with an excellent balance of ADME properties and potency; however, potential drug–drug interactions (DDI) were predicted based on CYP 2D6 affinities. Generation and analysis of key BACE1 and CYP 2D6 crystal structures identified strategies to obviate the DDI liability, leading to compound 16, which exhibits robust in vivo efficacy as a BACE1 inhibitor.
Drug Metabolism and Disposition | 2013
Amit S. Kalgutkar; Tim Ryder; Gregory S. Walker; Suvi T. M. Orr; Shawn Cabral; Theunis C. Goosen; Kimberly Lapham; Heather Eng
The current study examined the bioactivation potential of ghrelin receptor inverse agonists, 1-{2-[2-chloro-4-(2H-1,2,3-triazol-2-yl)benzyl]-2,7-diazaspiro[3.5]nonan-7-yl}-2-(imidazo[2,1-b]thiazol-6-yl)ethanone (1) and 1-{2-[2-chloro-4-(2H-1,2,3-triazol-2-yl)benzyl]-2,7-diazaspiro[3.5]nonan-7-yl}-2-(2-methylimidazo[2,1-b]thiazol-6-yl)ethanone (2), containing a fused imidazo[2,1-b]thiazole motif in the core structure. Both compounds underwent oxidative metabolism in NADPH- and glutathione-supplemented human liver microsomes to yield glutathione conjugates, which was consistent with their bioactivation to reactive species. Mass spectral fragmentation and NMR analysis indicated that the site of attachment of the glutathionyl moiety in the thiol conjugates was on the thiazole ring within the bicycle. Two glutathione conjugates were discerned with the imidazo[2,1-b]thiazole derivative 1. One adduct was derived from the Michael addition of glutathione to a putative S-oxide metabolite of 1, whereas, the second adduct was formed via the reaction of a second glutathione molecule with the initial glutathione-S-oxide adduct. In the case of the 2-methylimidazo[2,1-b]thiazole analog 2, glutathione conjugation occurred via an oxidative desulfation mechanism, possibly involving thiazole ring epoxidation as the rate-limiting step. Additional insights into the mechanism were obtained via 18O exchange and trapping studies with potassium cyanide. The mechanistic insights into the bioactivation pathways of 1 and 2 allowed the deployment of a rational chemical intervention strategy that involved replacement of the thiazole ring with a 1,2,4-thiadiazole group to yield 2-[2-chloro-4-(2H-1,2,3-triazol-2-yl)benzyl]-2,7-diazaspiro[3.5]nonan-7-yl)-2-(2-methylimidazo[2,1-b][1,3,4]thiadiazol-6-yl)ethanone (3). These structural changes not only abrogated the bioactivation liability but also retained the attractive pharmacological attributes of the prototype agents.
ACS Medicinal Chemistry Letters | 2015
Suvi T. M. Orr; Ramsay E. Beveridge; Samit Kumar Bhattacharya; Kimberly O'keefe Cameron; Steven B. Coffey; Dilinie P. Fernando; David Hepworth; Margaret Jackson; Vishal Khot; Rachel Kosa; Kimberly Lapham; Paula M. Loria; Kim F. McClure; Jigna Patel; Colin R. Rose; James Saenz; Ingrid A. Stock; Gregory Storer; Maria von Volkenburg; Derek Vrieze; Guoqiang Wang; Jun Xiao; Yingxin Zhang
Several polar heteroaromatic acetic acids and their piperidine amides were synthesized and evaluated as ghrelin or type 1a growth hormone secretagogue receptor (GHS-R1a) inverse agonists. Efforts to improve pharmacokinetic and safety profile was achieved by modulating physicochemical properties and, more specifically, emphasizing increased polarity of our chemical series. ortho-Carboxamide containing compounds provided optimal physicochemical, pharmacologic, and safety profile. pH-dependent chemical stability was also assessed with our series.
Chemical Research in Toxicology | 2016
Kimberly Lapham; Jonathan Novak; Lisa D. Marroquin; Rachel Swiss; Shuzhen Qin; Christopher J. Strock; Renato J. Scialis; Michael D. Aleo; Thomas Schroeter; Heather Eng; A. David Rodrigues; Amit S. Kalgutkar
Conjugated hyperbilirubinemia accompanied by cholestasis is a frequent side effect during chronic treatment with the antimicrobial agent fusidic acid. Previous studies from our laboratory, addressing mechanisms of musculoskeletal toxicity arising from coadministration of fusidic acid with statins, demonstrated the ability of fusidic acid to potently inhibit human organic anion transporting polypeptides OATP1B1 (IC50 = 1.6 μM) and OATP1B3 (IC50 = 2.5 μM), which are responsible for the uptake-limited clearance of statins as well as bilirubin glucuronide conjugates. In the present work, inhibitory effects of fusidic acid were characterized against additional human hepatobiliary transporters [Na+/taurocholate cotransporting polypeptide (NTCP), bile salt export pump (BSEP), and multidrug resistance-associated proteins MRP2 and MRP3] as well as uridine glucuronosyl transferase (UGT1A1), which mediate the disposition of bile acids and bilirubin (and its conjugated metabolites). Fusidic acid demonstrated concentration-dependent inhibition of human NTCP- and BSEP-mediated taurocholic acid transport with IC50 values of 44 and 3.8 μM, respectively. Inhibition of BSEP activity by fusidic acid was also consistent with the potent disruption of cellular biliary flux (AC50 = 11 μM) in the hepatocyte imaging assay technology assay, with minimal impact on other toxicity end points (e.g., cytotoxicity, mitochondrial membrane potential, reactive oxygen species generation, glutathione depletion, etc.). Fusidic acid also inhibited UGT1A1-catalyzed β-estradiol glucuronidation activity in human liver microsomes with an IC50 value of 16 μM. Fusidic acid did not demonstrate any significant inhibition of ATP-dependent LTC4 transport (IC50s > 300 μM) in human MRP2 or MRP3 vesicles. R values, which reflect maximal in vivo inhibition, were estimated from a static mathematical model by taking into consideration the IC50 values generated in the various in vitro assays and clinically efficacious unbound fusidic acid concentrations. The magnitudes of in vivo interaction (R values) resulting from the inhibition of OATP1B1, UGT1A1, NTCP, and BSEP transport were ∼1.9-2.6, 1.1-1.2, 1.0-1.1, and 1.4-1.7, respectively, which are indicative of some degree of inherent toxicity risk, particularly via inhibition of OATP and BSEP. Collectively, these observations indicate that inhibition of human BSEP by fusidic acid could affect bile acid homeostasis, resulting in cholestatic hepatotoxicity in the clinic. Lack of direct inhibitory effects on MRP2 transport by fusidic acid suggests that conjugated hyperbilirubinemia does not arise via interference in MRP2-mediated biliary disposition of bilirubin glucuronides. Instead, it is possible that elevation in the level of bilirubin conjugates in blood is mediated through inhibition of hepatic OATPs, which are responsible for their reuptake and/or downregulation of MRP2 transporter as a consequence of cholestatic injury.
Journal of Medicinal Chemistry | 2018
Brian T. O’Neill; Elizabeth Mary Beck; Christopher Ryan Butler; Charles E. Nolan; Cathleen Gonzales; Lei Zhang; Shawn D. Doran; Kimberly Lapham; Leanne M. Buzon; Jason K. Dutra; Gabriela Barreiro; Xinjun Hou; Luis Martinez-Alsina; Bruce N. Rogers; Anabella Villalobos; John C. Murray; Kevin Ogilvie; Erik LaChapelle; Cheng Chang; Lorraine Lanyon; Claire M. Steppan; Ashley Robshaw; Katherine Hales; Germaine Boucher; Karamjeet Pandher; Christopher Houle; Claude Ambroise; David Karanian; David Riddell; Kelly R. Bales
A major challenge in the development of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors for the treatment of Alzheimers disease is the alignment of potency, drug-like properties, and selectivity over related aspartyl proteases such as Cathepsin D (CatD) and BACE2. The potential liabilities of inhibiting BACE2 chronically have only recently begun to emerge as BACE2 impacts the processing of the premelanosome protein (PMEL17) and disrupts melanosome morphology resulting in a depigmentation phenotype. Herein, we describe the identification of clinical candidate PF-06751979 (64), which displays excellent brain penetration, potent in vivo efficacy, and broad selectivity over related aspartyl proteases including BACE2. Chronic dosing of 64 for up to 9 months in dog did not reveal any observation of hair coat color (pigmentation) changes and suggests a key differentiator over current BACE1 inhibitors that are nonselective against BACE2 in later stage clinical development.
Drug Metabolism and Disposition | 2018
Kimberly Lapham; Jian Lin; Jonathan Novak; Orozco Cc; Mark Niosi; Li Di; Theunis C. Goosen; Sangwoo Ryu; Keith Riccardi; Heather Eng; Kimberly O'keefe Cameron; Amit S. Kalgutkar
6-Chloro-5-[4-(1-hydroxycyclobutyl)phenyl]-1H-indole-3-carboxylic acid (PF-06409577) is a direct activator of the human β1-containing adenosine monophosphate-activated protein kinase (ΑMPK) isoforms. The clearance mechanism of PF-06409577 in animals and humans involves uridine diphosphoglucuronosyl transferase (UGT)–mediated glucuronidation to an acyl glucuronide metabolite of PF-06409577 [(2S,3S,4S,5R,6S)-6-((6-chloro-5-(4-(1-hydroxycyclobutyl)phenyl)-1H-indole-3-carbonyl)oxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxylic acid (M1)], which retains selective activation of human β1-containing AMPK isoforms. This paper describes a detailed characterization of the human UGT isoform(s) responsible for glucuronidation of PF-06409577 to M1. Studies using a panel of 13 human recombinant UGT (hrUGT) enzymes indicated that PF-06409577 was converted to M1 in a highly selective fashion by UGT1A1, which was further verified in human liver microsomes treated with specific chemical inhibitors, and in different UGT1A1 expressers. Conversion of PF-06409577 to M1 by UGT1A1 occurred in a relatively selective fashion, compared with β-estradiol (ES), a conventional probe substrate of UGT1A1. The Michaelis-Menten constant (KM) and Vmax values describing the formation of M1 from PF-06409577 in hrUGT1A1 and microsomal preparations from human intestine, liver, and kidney ranged from 131 to 212 μM (KM) and 107–3834 pmol/min per milligram (Vmax) in the presence of 2% bovine serum albumin. Relative activity factors (RAF) were determined for UGT1A1 using PF-06409577 and ES to enable estimation of intrinsic clearance from various tissues. RAF values from PF-06409577 and ES were generally comparable with the exception of intestinal microsomes, where ES overestimated the RAF of UGT1A1 due to glucuronidation by intestinal UGT1A8 and UGT1A10. Our results suggest the potential utility of PF-06409477 as a selective probe UGT1A1 substrate for UGT reaction phenotyping and inhibition studies in preclinical discovery/development.
Bioorganic & Medicinal Chemistry Letters | 2007
Lain Yen Hu; Huangshu John Lei; Daniel Du; Theodore R. Johnson; Victor Fedij; Catherine Rose Kostlan; Wen Song Yue; Mark Lovdahl; Jie Jack Li; Mathew Carroll; Danielle Dettling; Jeffrey Asbill; Conglin Fan; Kimberly Wade; David Pocalyko; Kimberly Lapham; Radhika Yalamanchili; Brian Samas; Derek Vrieze; Susan Ciotti; Teresa Krieger-Burke; Drago Robert Sliskovic; Howard Welgus