Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kosuke Kawaguchi is active.

Publication


Featured researches published by Kosuke Kawaguchi.


Scientific Reports | 2016

Translocation of the ABC transporter ABCD4 from the endoplasmic reticulum to lysosomes requires the escort protein LMBD1

Kosuke Kawaguchi; Takumi Okamoto; Masashi Morita; Tsuneo Imanaka

We previously demonstrated that ABCD4 does not localize to peroxisomes but rather, the endoplasmic reticulum (ER), because it lacks the NH2-terminal hydrophilic region required for peroxisomal targeting. It was recently reported that mutations in ABCD4 result in a failure to release vitamin B12 from lysosomes. A similar phenotype is caused by mutations in LMBRD1, which encodes the lysosomal membrane protein LMBD1. These findings suggested to us that ABCD4 translocated from the ER to lysosomes in association with LMBD1. In this report, it is demonstrated that ABCD4 interacts with LMBD1 and then localizes to lysosomes, and this translocation depends on the lysosomal targeting ability of LMBD1. Furthermore, endogenous ABCD4 was localized to both lysosomes and the ER, and its lysosomal localization was disturbed by knockout of LMBRD1. To the best of our knowledge, this is the first report demonstrating that the subcellular localization of the ABC transporter is determined by its association with an adaptor protein.


JIMD Reports | 2013

A Novel Double Mutation in the ABCD1 Gene in a Patient with X-linked Adrenoleukodystrophy: Analysis of the Stability and Function of the Mutant ABCD1 Protein

Masashi Morita; Junpei Kobayashi; Kozue Yamazaki; Kosuke Kawaguchi; Ayako Honda; Kenji Sugai; Nobuyuki Shimozawa; Reiji Koide; Tsuneo Imanaka

We diagnosed an adrenomyeloneuropathy (AMN) patient with a double novel missense mutation, c.284C>A (p.A95D) and c.290A>T (p.H97L) in a single ABCD1 allele. In skin fibroblasts from the patient, no ABCD1 protein was detected by immunoblot analysis, and the C24:0 β-oxidation activity was decreased to a level at which the ABCD1 protein was absent. To determine the responsible gene mutation in the patient, we constructed three kinds of mutated ABCD1 gene expression vectors (c.284C>A, c.290A>T or c.284C>A/c.290A>T) and transfected them into CHO cells stably expressing GFP-SKL (CHO/GFP-SKL cells) or CADDS fibroblasts lacking the ABCD1 gene. ABCD1 (p.H97L) displayed the correct peroxisomal localization in CHO/GFP-SKL cells, but ABCD1 (p.A95D) and ABCD1 (p.A95D/p.H97L) were diffuse in the cytosol. Furthermore, ABCD1 (p.H97L) was detected by immunoblot analysis and restored the C24:0 β-oxidation activity in the CADDS fibroblasts, as the wild type ABCD1 did. On the other hand, ABCD1 (p.A95D) and ABCD1 (p.A95D/p.H97L) were not detected and the C24:0 β-oxidation activity was not restored. These results clearly show that c.284C>A is the responsible gene mutation, whereas c.290A>T is a novel polymorphism.


BioMed Research International | 2016

ABC Transporter Subfamily D: Distinct Differences in Behavior between ABCD1–3 and ABCD4 in Subcellular Localization, Function, and Human Disease

Kosuke Kawaguchi; Masashi Morita

ATP-binding cassette (ABC) transporters are one of the largest families of membrane-bound proteins and transport a wide variety of substrates across both extra- and intracellular membranes. They play a critical role in maintaining cellular homeostasis. To date, four ABC transporters belonging to subfamily D have been identified. ABCD1–3 and ABCD4 are localized to peroxisomes and lysosomes, respectively. ABCD1 and ABCD2 are involved in the transport of long and very long chain fatty acids (VLCFA) or their CoA-derivatives into peroxisomes with different substrate specificities, while ABCD3 is involved in the transport of branched chain acyl-CoA into peroxisomes. On the other hand, ABCD4 is deduced to take part in the transport of vitamin B12 from lysosomes into the cytosol. It is well known that the dysfunction of ABCD1 results in X-linked adrenoleukodystrophy, a severe neurodegenerative disease. Recently, it is reported that ABCD3 and ABCD4 are responsible for hepatosplenomegaly and vitamin B12 deficiency, respectively. In this review, the targeting mechanism and physiological functions of the ABCD transporters are summarized along with the related disease.


Biochemical and Biophysical Research Communications | 2014

Role of NH2-terminal hydrophobic motif in the subcellular localization of ATP-binding cassette protein subfamily D: Common features in eukaryotic organisms

Asaka Lee; Kota Asahina; Takumi Okamoto; Kosuke Kawaguchi; Dzmitry G. Kostsin; Yoshinori Kashiwayama; Kojiro Takanashi; Kazufumi Yazaki; Tsuneo Imanaka; Masashi Morita

In mammals, four ATP-binding cassette (ABC) proteins belonging to subfamily D have been identified. ABCD1-3 possesses the NH2-terminal hydrophobic region and are targeted to peroxisomes, while ABCD4 lacking the region is targeted to the endoplasmic reticulum (ER). Based on hydropathy plot analysis, we found that several eukaryotes have ABCD protein homologs lacking the NH2-terminal hydrophobic segment (H0 motif). To investigate whether the role of the NH2-terminal H0 motif in subcellular localization is conserved across species, we expressed ABCD proteins from several species (metazoan, plant and fungi) in fusion with GFP in CHO cells and examined their subcellular localization. ABCD proteins possessing the NH2-terminal H0 motif were localized to peroxisomes, while ABCD proteins lacking this region lost this capacity. In addition, the deletion of the NH2-terminal H0 motif of ABCD protein resulted in their localization to the ER. These results suggest that the role of the NH2-terminal H0 motif in organelle targeting is widely conserved in living organisms.


FEBS Letters | 2016

Characterization of the Interaction between Trypanosoma Brucei Pex5P and its Receptor Pex14P.

Yuichi Watanabe; Kosuke Kawaguchi; Naoki Okuyama; Yuri Sugawara; Takayuki Obita; Mineyuki Mizuguchi; Masashi Morita; Tsuneo Imanaka

The interaction of Trypanosoma brucei (Tb) Pex5p and its receptor TbPex14p is essential for the translocation of newly synthesized matrix proteins into the glycosome. Here, we reveal that only the third WXXXF/Y motif of TbPex5p is involved in the interaction and that negative charge of the fourth amino acid is important. We suggest that Phe35 and Phe52 of TbPex14p interact with Trp318 and Phe322 in the third motif and that the Lys56 adjacent to Phe35/Phe52 associates with the fourth Glu in the motif to make the complex. This information is expected to be useful for developing anti‐trypanosomal drugs.


Metabolic Brain Disease | 2015

Brain microsomal fatty acid elongation is increased in abcd1-deficient mouse during active myelination phase

Masashi Morita; Misato Kawamichi; Yusuke Shimura; Kosuke Kawaguchi; Shiro Watanabe; Tsuneo Imanaka

The dysfunction of ABCD1, a peroxisomal ABC protein, leads to the perturbation of very long chain fatty acid (VLCFA) metabolism and is the cause of X-linked adrenoleukodystrophy. Abcd1-deficient mice exhibit an accumulation of saturated VLCFAs, such as C26:0, in all tissues, especially the brain. The present study sought to measure microsomal fatty acid elongation activity in the brain of wild-type (WT) and abcd1-deficient mice during the course of development. The fatty acid elongation activity in the microsomal fraction was measured by the incorporation of [2-14C]malonyl-CoA into fatty acids in the presence of C16:0-CoA or C20:0-CoA. Cytosolic fatty acid synthesis activity was completely inhibited by the addition of N-ethylmaleimide (NEM). The microsomal fatty acid elongation activity in the brain was significantly high at 3xa0weeks after birth and decreased substantially at 3xa0months after birth. Furthermore, we detected two different types of microsomal fatty acid elongation activity by using C16:0-CoA or C20:0-CoA as the substrate and found the activity toward C20:0-CoA in abcd1-deficient mice was higher than the WT 3-week-old animals. These results suggest that during the active myelination phase the microsomal fatty acid elongation activity is stimulated in abcd1-deficient mice, which in turn perturbs the lipid composition in myelin.


Biological & Pharmaceutical Bulletin | 2015

Characterization of Russell Bodies Accumulating Mutant Antithrombin Derived from the Endoplasmic Reticulum

Koji Kimura; Kosuke Kawaguchi; Yumiko Ueda; Seisuke Arai; Masashi Morita; Tsuneo Imanaka; Ikuo Wada

The endoplasmic reticulum (ER) adjusts its size and architecture to adapt to change in the surrounding environment. Russell bodies (RBs) were originally described as dilated structures of the ER cisternae containing large amounts of mutant immunoglobulin. Similar structures are observed in a wide variety of mutant proteins accumulated in the ER. We previously prepared Chinese hamster ovary (CHO) cells in which the expression of mutant antithrombin (AT) (C95R) was controlled with a Tet-On system and showed that RBs can be conditionally formed. However the precise architecture and intracellular behavior of RBs have been as yet only poorly characterized. To characterize the properties of RB, we prepared the same system using a green fluorescent protein (GFP)-fused mutant and measured the dynamics and architecture of RBs. We observed the mobile nature of the molecule in the RB lumen and RBs were separated from the rest of the ER network by narrow tubes. Furthermore, we found that the RBs were not simply expanded ER membranes. The RB lumen is filled with misfolded proteins that are surrounded by ER membranes. In addition, RBs mostly maintain their structure during cell division, possess ribosomes on their membranes and synthesize AT(C95R)-GFP. Based on the characterization of the hydrodynamic radius of AT(C95R)-GFP and the effect of DP1, an ER-shaping protein, we propose that RBs are spontaneously formed as a result of the partitioning of the misfolded AT with the shaping protein.


Archive | 2018

Stability of the ABCD1 Protein with a Missense Mutation: A Novel Approach to Finding Therapeutic Compounds for X-Linked Adrenoleukodystrophy

Masashi Morita; Shun Matsumoto; Airi Sato; Kengo Inoue; Dzmitry G. Kostsin; Kozue Yamazaki; Kosuke Kawaguchi; Nobuyuki Shimozawa; Ronald J. A. Wanders; Hirotatsu Kojima; Takayoshi Okabe; Tsuneo Imanaka

Mutations in the ABCD1 gene that encodes peroxisomal ABCD1 protein cause X-linked adrenoleukodystrophy (X-ALD), a rare neurodegenerative disorder. More than 70% of the patient fibroblasts with this missense mutation display either a lack or reduction of the ABCD1 protein because of posttranslational degradation. In this study, we analyzed the stability of the missense mutant ABCD1 proteins (p.A616T, p.R617H, and p.R660W) in X-ALD fibroblasts and found that the mutant ABCD1 protein p.A616T has the capacity to recover its function by incubating at low temperature. In the case of such a mutation, chemical compounds that stabilize mutant ABCD1 proteins could be therapeutic candidates. Here, we prepared CHO cell lines stably expressing ABCD1 proteins with a missense mutation in fusion with green fluorescent protein (GFP) at the C-terminal. The stability of each mutant ABCD1-GFP in CHO cells was similar to the corresponding mutant ABCD1 protein in X-ALD fibroblasts. Furthermore, it is of interest that the GFP at the C-terminal was degraded together with the mutant ABCD1 protein. These findings prompted us to use CHO cells expressing mutant ABCD1-GFP for a screening of chemical compounds that can stabilize the mutant ABCD1 protein. We established a fluorescence-based assay method for the screening of chemical libraries in an effort to find compounds that stabilize mutant ABCD1 proteins. The work presented here provides a novel approach to finding therapeutic compounds for X-ALD patients with missense mutations.


Biochemical and Biophysical Research Communications | 2018

Characterization of human ATP-binding cassette protein subfamily D reconstituted into proteoliposomes

Takumi Okamoto; Kosuke Kawaguchi; Shiro Watanabe; Rina Agustina; Toshiki Ikejima; Keisuke Ikeda; Minoru Nakano; Masashi Morita; Tsuneo Imanaka

In mammals, four ATP-binding cassette (ABC) proteins belonging to subfamily D have been identified. ABCD1‒3 are located on peroxisomal membrane and play an important role in the transportation of various fatty acid-CoA derivatives, including very long chain fatty acid-CoA, into peroxisomes. ABCD4 is located on lysosomal membrane and is suggested to be involved in the transport of vitamin B12 from lysosomes to the cytosol. However, the precise transport mechanism by which these ABC transporters facilitate the import or export of substrate has yet to be well elucidated. In this study, the overexpression of human ABCD1‒4 in the methylotrophic yeast Pichia pastoris and a purification procedure were developed. The detergent-solubilized proteins were reconstituted into liposomes. ABCD1‒4 displayed stable ATPase activity, which was inhibited by AlF3. Furthermore, ABCD1‒4 were found to possess an equal levels of acyl-CoA thioesterase activity. Proteoliposomes is expected to be an aid in the further biochemical characterization of ABCD transporters.


Archive | 2017

Function of Peroxisome in Mammal and Analysis of the Fatty Acid Oxidation System by Photoaffinity Labeling

Tsuneo Imanaka; Kosuke Kawaguchi; Masashi Morita

Peroxisomes play an essential role in a number of important metabolic pathways including oxidation of fatty acids, and synthesis of ether phospholipids and bile acids. Long, very long, and branched-chain fatty acid-CoA as well as intermediate metabolites for bile acid synthesis are transported into peroxisomes through ATP-binding cassette (ABC) transporters, ABCD1-3 on the membranes and oxidized by α- and β-oxidation enzymes. Mutation of these transporters and enzymes causes severe peroxisomal disorders. Characterization of molecular mechanism of the substrate transport and the enzyme reaction is an important issue to figure out the role of these proteins in lipid metabolism under physiological and pathological conditions. Recently precise structure of several enzymes involved in peroxisomal fatty acid oxidation has been revealed by the studies based on X-ray crystallography and NMR spectroscopy. However, the molecular mechanisms of these proteins, especially in terms of substrate binding, have not yet been elucidated in detail. Photoaffinity labeling has been a powerful tool to find specific region for the binding of the substrate using a ligand with a photoactivatable group. Here, we first review biogenesis and function of peroxisome, and then focus our attention to molecular recognition of substrate by peroxisomal proteins including ABC transporters by photoaffinity labeling.

Collaboration


Dive into the Kosuke Kawaguchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ikuo Wada

Fukushima Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge