Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristjan Bregendahl is active.

Publication


Featured researches published by Kristjan Bregendahl.


Poultry Science | 2008

A Survey of Commercially Available Broilers Marketed as Organic, Free-Range, and Conventional Broilers for Cooked Meat Yields, Meat Composition, and Relative Value

R. L. Husak; Joseph G. Sebranek; Kristjan Bregendahl

The objective of this survey was to investigate qualitative and quantitative properties of meat from organic, free-range, and conventional broilers as currently provided to consumers. Fifteen broilers from 4 suppliers of each type were evaluated for raw meat yield, cooked meat yield, proximate composition, pH, color, lipid oxidation, fatty acid composition, and sensory attributes. Organic broilers yielded more dark (thigh) meat (P < 0.05) than free-range or conventional, when compared on a raw-meat basis, but conventional and free-range broilers yielded more (P < 0.05) cooked light (breast) meat than organic. Protein content of organic breast and thigh meat was greater (P < 0.05) than conventional in the raw and the cooked meat comparisons. The pH of breast meat from organic broilers was higher (P < 0.05) than free-range or conventional. Organic breast and thigh meat was less yellow (P < 0.05) than free-range or conventional. Fatty acid analysis showed that organic breasts and thighs were lower (P < 0.05) in saturated and monounsaturated fatty acids and higher (P < 0.05) in polyunsaturated fatty acids than free-range and conventional broilers. Shear force measurements were less (P < 0.05) for both breast and thigh meat from conventional broilers relative to free-range and organic broilers. Sensory panel results indicated that thighs from conventional broilers were more tender (P < 0.05) and less chewy (P < 0.05) than thighs from free-range and organic broilers, whereas other sensory properties did not differ. At the time of the study, March through May of 2006, the average retail prices for US broilers were USD 3.19, USD 2.78, and USD 1.29 per pound (USD 7.03, USD 6.13, and USD 2.84/kg) for organic, free-range, and conventional, respectively. Whereas a difference in the fatty acid composition was the largest difference observed between retail broilers in this survey, it is important to note that diets and production environments within the study were not controlled. It is apparent that the market prices for broilers at the time of this study are not fully reflected in the quantitative and qualitative measurements included in this study. It appears that consumers may be placing significant value on more intangible attributes associated with broilers marketed as organic and free-range chicken than on those attributes measured in this study.


Poultry Science | 2008

Apparent Metabolizable Energy of Glycerin for Broiler Chickens

W. A. Dozier; B. J. Kerr; A. Corzo; M. T. Kidd; T. E. Weber; Kristjan Bregendahl

Three energy balance experiments were conducted to determine AMEn of glycerin using broiler chickens of diverse ages. In experiment 1, two dietary treatments were fed from 4 to 11 d of age. Dietary treatments consisted of a control diet (no added glycerin) and a diet containing 6% glycerin (94% control diet + 6% glycerin). Four dietary treatments were provided in experiment 2 (from 17 to 24 d of age) and 3 (from 38 to 45 d of age). Diets in experiment 2 and 3 were 1) control diet (no added glycerin); 2) 3% added glycerin (97% control diet + 3% glycerin); 3) 6% added glycerin (94% control diet + 6% glycerin); and 4) 9% added glycerin (91% control diet + 9% glycerin). Diets in experiment 1 and 2 were identical, but the diet used in experiment 3 had reduced nutrient levels based on bird age. In experiments 2 and 3, broilers were fed 91, 94, 97, and 100% of ad libitum intake so that differences in AMEn consumption were only due to glycerin. A single source of glycerin was used in all experiments. Feed intake, BW, energy intake, energy excretion, nitrogen intake, nitrogen excretion, AMEn, and AMEn intake were determined in all experiments. In experiment 1, AMEn determination utilized the difference approach by subtracting AMEn of the control diet from AMEn of the test diet. In experiments 2 and 3, AMEn intake was regressed against feed intake with the slope estimating AMEn of glycerin. Regression equations were Y = 3,331x -72.59 (P < or = 0.0001) and Y = 3,348.62x -140.18 (P < or = 0.0001) for experiments 2 and 3, respectively. The AMEn of glycerin was determined as 3,621, 3,331, and 3,349 kcal/kg in experiments 1, 2, and 3, respectively. The average AMEn of glycerin across the 3 experiments was 3,434 kcal/kg, which is similar to its gross energy content. These results indicate that AMEn of glycerin is utilized efficiently by broiler chickens.


Journal of Animal Science | 2008

Growth performance, carcass characteristics, meat quality, and tissue histology of growing pigs fed crude glycerin-supplemented diets.

Peter J. Lammers; B. J. Kerr; T. E. Weber; Kristjan Bregendahl; Steven M. Lonergan; Kenneth J. Prusa; Dong U. Ahn; William C. Stoffregen; William A. Dozier; Mark S. Honeyman

The effects of dietary crude glycerin on growth performance, carcass characteristics, meat quality indices, and tissue histology in growing pigs were determined in a 138-d feeding trial. Crude glycerin utilized in the trial contained 84.51% glycerin, 11.95% water, 2.91% sodium chloride, and 0.32% methanol. Eight days postweaning, 96 pigs (48 barrows and 48 gilts, average BW of 7.9 +/- 0.4 kg) were allotted to 24 pens (4 pigs/pen), with sex and BW balanced at the start of the experiment. Dietary treatments were 0, 5, and 10% crude glycerin inclusion in corn-soybean meal-based diets and were randomly assigned to pens. Diets were offered ad libitum in meal form and formulated to be equal in ME, sodium, chloride, and Lys, with other AA balanced on an ideal AA basis. Pigs and feeders were weighed every other week to determine ADG, ADFI, and G:F. At the end of the trial, all pigs were scanned using real-time ultrasound and subsequently slaughtered at a commercial abattoir. Blood samples were collected pretransport and at the time of slaughter for plasma metabolite analysis. In addition, kidney, liver, and eye tissues were collected for subsequent examination for lesions characteristic of methanol toxicity. After an overnight chilling of the carcass, loins were removed for meat quality, sensory evaluation, and fatty acid profile analysis. Pig growth, feed intake, and G:F were not affected by dietary treatment. Dietary treatment did not affect 10th-rib backfat, LM area, percent fat free lean, meat quality, or sensory evaluation. Loin ultimate pH was increased (P = 0.06) in pigs fed the 5 and 10% crude glycerin compared with pigs fed no crude glycerin (5.65 and 5.65 versus 5.57, respectively). Fatty acid profile of the LM was slightly changed by diet with the LM from pigs fed 10% crude glycerin having less linoleic acid (P < 0.01) and more eicosapentaenoic acid (P = 0.02) than pigs fed the 0 or 5% crude glycerin diets. Dietary treatment did not affect blood metabolites or frequency of lesions in the examined tissues. This experiment demonstrated that pigs can be fed up to 10% crude glycerin with no effect on pig performance, carcass composition, meat quality, or lesion scores.


Poultry Science | 2008

Ideal Ratios of Isoleucine, Methionine, Methionine Plus Cystine, Threonine, Tryptophan, and Valine Relative to Lysine for White Leghorn-Type Laying Hens of Twenty-Eight to Thirty-Four Weeks of Age

Kristjan Bregendahl; Stacey Roberts; B. J. Kerr; D. Hoehler

Seven separate experiments were conducted with Hy-Line W-36 hens to determine the ideal ratio of Arg, Ile, Met, Met+Cys, Thr, Trp, and Val relative to Lys for maximal egg mass. The experiments were conducted simultaneously and were each designed as a randomized complete block design with 60 experimental units (each consisting of 1 cage with 2 hens) and 5 dietary treatments. The 35 assay diets were made from a common basal diet (2,987 kcal/kg of ME; 12.3% CP; 4.06% Ca, 0.47% nonphytate P), formulated using corn, soybean meal, and meat and bone meal. The true digestible amino acid contents in the basal diet were determined using the precision-fed assay with adult cecectomized roosters. Crystalline L-Arg (free base), L-Ile, L-Lys.HCl, DL-Met, L-Thr, L-Trp, and L-Val (considered 100% true digestible) were added to the basal diet at the expense of cornstarch to make the respective assayed amino acid first limiting and to yield 5 graded inclusions of the assayed amino acid. Hens were fed the assay diets from 26 to 34 wk of age, with the first 2 wk considered a depletion period. Egg production was recorded daily and egg weight was determined weekly on eggs collected over 48 h; egg mass was calculated as egg production x egg weight. The requirement for each amino acid was determined using the broken-line regression method. Consumption of Arg did not affect egg mass, thus a requirement could not be determined. The true digestible amino acid requirements used to calculate the ideal amino acid ratio for maximum egg mass were 426 mg/d of Ile, 538 mg/d of Lys, 253 mg/d of Met, 506 mg/d of Met+Cys, 414 mg/d of Thr, 120 mg/d of Trp, and 501 mg/d of Val. The ideal amino acid ratio for maximum egg mass was Ile 79%, Met 47%, Met+Cys 94%, Thr 77%, Trp 22%, and Val 93% on a true digestible basis relative to Lys. The ideal Met and Met+Cys ratios were verified in an ensuing identical experiment with 52- to 58-wk-old hens.


Poultry Science | 2008

The Correlation of Chemical and Physical Corn Kernel Traits with Production Performance in Broiler Chickens and Laying Hens

S. M. Moore; Kenneth J. Stalder; Donald C. Beitz; Chad H. Stahl; W. A. Fithian; Kristjan Bregendahl

A study was conducted to determine the influence on broiler chicken growth and laying hen performance of chemical and physical traits of corn kernels from different hybrids. A total of 720 male 1-d-old Ross-308 broiler chicks were allotted to floor pens in 2 replicated experiments with a randomized complete block design. A total of 240 fifty-two-week-old Hy-Line W-36 laying hens were allotted to cages in a randomized complete block design. Corn-soybean meal diets were formulated for 3 broiler growth phases and one 14-wk-long laying hen phase to be marginally deficient in Lys and TSAA to allow for the detection of differences or correlations attributable to corn kernel chemical or physical traits. The broiler chicken diets were also marginally deficient in Ca and nonphytate P. Within a phase, corn- and soybean-based diets containing equal amounts of 1 of 6 different corn hybrids were formulated. The corn hybrids were selected to vary widely in chemical and physical traits. Feed consumption and BW were recorded for broiler chickens every 2 wk from 0 to 6 wk of age. Egg production was recorded daily, and feed consumption and egg weights were recorded weekly for laying hens between 53 and 67 wk of age. Physical and chemical composition of kernels was correlated with performance measures by multivariate ANOVA. Chemical and physical kernel traits were weakly correlated with performance in broiler chickens from 0 to 2 wk of age (P<0.05, | r |<0.42). However, from 4 to 6 wk of age and 0 to 6 wk of age, only kernel chemical traits were correlated with broiler chicken performance (P<0.05, | r |<0.29). From 53 to 67 wk of age, correlations were observed between both kernel physical and chemical traits and laying hen performance (P<0.05, | r |<0.34). In both experiments, the correlations of performance measures with individual kernel chemical and physical traits for any single kernel trait were not large enough to base corn hybrid selection on for feeding poultry.


Journal of The Air & Waste Management Association | 2012

Reducing ammonia emissions from laying-hen houses through dietary manipulation.

Hong Li; Hongwei Xin; Robert Burns; Stacey Roberts; Shuhai Li; James Kliebenstein; Kristjan Bregendahl

Feed additives can change the microbiological environment of the animal digestive track, nutrient composition of feces, and its gaseous emissions. This 2-yr field study involving commercial laying-hen houses in central Iowa was conducted to assess the effects of feeding diets containing EcoCal and corn-dried distillers grain with solubles (DDGS) on ammonia (NH3), hydrogen sulfide (H2S), and greenhouse gas (CO2, CH4, and N2O) emissions. Three high-rise layer houses (256,600 W-36 hens per house) received standard industry diet (Control), a diet containing 7% EcoCal (EcoCal) or a diet containing 10% DDGS (DDGS). Gaseous emissions were continuously monitored during the period of December 2007 to December 2009, covering the full production cycle. The 24-month test results revealed that mean NH3 emission rates were 0.58 ± 0.05, 0.82 ± 0.04, and 0.96 ± 0.05 g/hen/day for the EcoCal, DDGS, and Control diet, respectively. Namely, compared to the Control diet, the EcoCal and DDGS diets reduced NH3 emission by an average of 39.2% and 14.3%, respectively. The concurrent H2S emission rates were 5.39 ± 0.46, 1.91 ± 0.13, and 1.79 ± 0.16 mg/hen/day for the EcoCal, DDGS, and Control diet, respectively. CO2 emission rates were similar for the three diets, 87.3 ± 1.37, 87.4 ± 1.26, and 89.6 ± 1.6 g/hen/day for EcoCal, DDGS, and Control, respectively (P = 0.45). The DDGS and EcoCal houses tended to emit less CH4 than the Control house (0.16 and 0.12 vs. 0.20 g/hen/day) during the monitored summer season. The efficacy of NH3 emission reduction by the EcoCal diet decreased with increasing outside temperature, varying from 72.2% in February 2009 to −7.10% in September 2008. Manure of the EcoCal diet contained 68% higher ammonia nitrogen (NH3-N) and 4.7 times higher sulfur content than that of the Control diet. Manure pH values were 8.0, 8.9, and 9.3 for EcoCal, DDGS, and Control diets, respectively. This extensive field study verifies that dietary manipulation provides a viable means to reduce NH3 emissions from modern laying-hen houses. Implications This work demonstrated that dietary manipulation can be used to reduce NH3 emissions from high-rise laying-hen houses with no adverse effect on the hen production performances (to be presented separately). The NH3 reduction rates could vary with different climates and hence geographic locations. The dietary manipulation to lower NH3 emissions should be applicable to all egg production systems. The results of this study also contribute to the baseline data for improving the national air emissions inventory for livestock and poultry production facilities.


Poultry Science | 2010

Effects of a premolt calcium and low-energy molt program on laying hen behavior and heterophil-to-lymphocyte ratios

Emily R. Dickey; Kristjan Bregendahl; Kenneth J. Stalder; Robert F. Fitzgerald; Anna K. Johnson

The objectives of this study were to compare the behaviors, postures, and heterophil-to-lymphocyte ratios (H:L) of laying hens housed in a cage system when offered a Ca premolt treatment and low-energy molt diets vs. a traditional feed withdrawal (FW) treatment during and after molt. A total of 144 Hy-Line W-36 hens (85 wk of age), housed 3 hens/cage (413 cm(2)/hen), were used. Hens were allotted to treatments according to a randomized complete block design, with the cage location and initial BW as the blocking criteria. Six treatments were compared in a 2 × 3 factorial arrangement with 2 Ca premolt treatments (fine or coarse) and 3 low-energy molt diets (FW, soybean hulls, or wheat middlings). The 2 Ca premolt treatments differed only in Ca particle size (fine was 0.14 mm and coarse was 2.27 mm mean diameter). Two postures and 5 behaviors were recorded and H:L was measured. Data were analyzed using the MIXED procedure of SAS, with P < 0.05 considered significant. There were no differences in behaviors, postures, or H:L during the premolt baseline period. The Ca premolt treatment had no carryover effects during or after molt for behaviors or postures. During molt, hens in the FW treatment were more active, and they ate and drank less compared with hens fed soybean hulls or wheat middlings, but there were no differences in aggression, nonnutritive pecking, or sitting. Drinking and aggression during and after molt were not different, but hens postmolt engaged in more sitting and feeding and less activity, nonnutritive pecking, and preening compared with during molt. There were no differences in H:L during or after molt. In conclusion, a Ca premolt treatment did not affect the behavior of the laying hen. The low-energy molt diets did not adversely affect behavior compared with FW and did not increase H:L; therefore, they could be useful alternatives for inducing molt in laying hens.


Central theme, technology for all: sharing the knowledge for development. Proceedings of the International Conference of Agricultural Engineering, XXXVII Brazilian Congress of Agricultural Engineering, International Livestock Environment Symposium - ILES VIII, Iguassu Falls City, Brazil, 31st August to 4th September, 2008. | 2008

Effects of dietary modification on laying hens in high-rise houses: Part I - Emissions of ammonia, hydrogen sulfide and carbon dioxide.

Hong Li; Hongwei Xin; Robert Burns; Stacey Roberts; Kristjan Bregendahl

Dietary manipulation can substantially lower ammonia (NH3) emissions from laying-hen houses or manure storage. Recent lab studies showed a reduction of 40–60% in ammonia emissions for an experimental (EcoCalTM) diet as compared the standard or control diet. However, adoption of a mitigation technology at commercial production level should be preceded by substantial field verification tests to document not only NH3 emission reduction, but also impact of the strategy on production performance of the hens and cash returns. A study to assess the effects of feeding diets containing EcoCal on NH3, hydrogen sulfide (H2S), and carbon dioxide (CO2) emissions, laying-hen production performance, and economic returns was conducted at a commercial laying-hen farm in central Iowa. Two houses (256,000 or 262,000 hens per house) were used for the study. Hens in one house were fed the EcoCal diet while hens in the other house were fed a standard or control diet containing no EcoCal. A state-of-the-art mobile air emissions monitoring unit (MAEMU) and the associated sampling system were used to continuously monitor the gaseous concentrations, ventilation rate and environmental conditions. Comparative data collected from December 2006 to May 2007 are presented in this paper. Data from this period showed that the EcoCal diet led to NH3 emission reduction by up to 23.2% (0.86±0.04 and 1.12±0.03 g/d·hen for EcoCal and Control diet, respectively), at the same time, H2S emission increased by up to 134% (4.38±0.20 and 1.82±0.07 mg/d·hen for EcoCal and Control diet, respectively), although the magnitude of H2S emission is rather small for both dietary regimens. Data on the hen production performance are reported in a companion paper (Roberts et al., 2008).


Poultry Science | 2012

Effects of a premolt calcium and low-energy molt program on laying hen performance, egg quality, and economics.

Emily R. Dickey; Anna K. Johnson; Kenneth J. Stalder; Kristjan Bregendahl

The objectives of this study were to evaluate and compare the effects of production, physiology, egg quality, and economics of laying hens housed in a cage system when offered a calcium premolt treatment and low-energy molt diets versus a traditional feed withdrawal (FW) treatment during and after molt. In total, 981 Hy-Line W-36 laying hens (85 wk of age) housed 3 per cage were used. Six treatments were compared in a 2 × 3 factorial design with 2 calcium premolt treatments (fine and coarse) and 3 molt diets (FW, soybean hulls, and wheat middlings). The coarse Ca was a 50:50 mix of fine (0.14-mm mean diameter) and coarse (2.27-mm mean diameter) CaCO(3), whereas the fine Ca was an all-fine CaCO(3). Both diets were formulated to contain 4.6% Ca, such that only the particle size of the CaCO(3) differed. Production parameters in experiment 1 included egg production, egg weight and mass, specific gravity, Haugh units, egg components, feed consumption and utilization, and BW. Physiological parameters in experiment 2 included ovary and oviduct weights, femur- and humerus-ash percentages, heterophil to lymphocyte ratios, plasma Ca and inorganic P concentrations, and alkaline phosphatase activity. Data were analyzed by ANOVA and P < 0.05 was significant. The fine-Ca premolt treatment was more effective than the coarse-Ca treatment at decreasing egg production during molt and increasing it postmolt, regardless of the molt diet. The FW molt diet resulted in the greatest decrease in production, but the soybean hulls diet resulted in lower production and ovary and oviduct weights during molt compared with those of the wheat middlings molt diet. Therefore, a fine-Ca premolt treatment and a low-energy molt diet, particularly soybean hulls, can be useful alternatives to a FW molt.


Transactions of the ASABE | 2012

Effects of Laying-Hen Strain on Manure Properties and Ammonia Emission

Shafiqur Rahman; Hongwei Xin; Stacey Roberts; James Arthur; Robert T. Burns; Hong Li; Zhiping Zhu; Lara B. Moody; Kristjan Bregendahl

Ammonia (NH3) emissions from laying hens are affected by nutrient content of the diet, manure quantity, and manure properties such as moisture content, nitrogen content, and pH. These production traits may vary with strain of the hen. However, limited information is available concerning the effects of laying-hen genetics on manure properties and NH3 emission. This study was conducted to comparatively quantify production performance, manure properties, and NH3 emissions (through N mass balance) of four white-egg-laying strains (Hy-Line W-36, Hy-Line W-98, Lohmann LSL Lite, and Bovans White) and four brown-egg-laying strains (Hy-Line Brown, Lohmann Brown, ISA Brown, and Bovans Brown) during two production periods of 27-28 weeks (P1) and 35-36 weeks (P2) of age. The diets were formulated to meet the nutritional needs of the brown and white hens. As a result, crude protein contents during P1 and P2 were, respectively, 13.2% and 15.2% for the brown hens but 14.5% and 17.4% for the white hens. The results showed that the brown and white hens had similar hen-day egg production (97.5% to 89.2% for brown hens and 96.0% to 88.2% for white hens) and egg mass output (57.1 to 52.6 g d-1 hen-1 for brown hens and 55.6 to 51.2 g d-1 hen-1 for white hens) but different feed consumption (112 to 98 g d-1 hen-1 for brown hens and 101 to 93 g d-1 hen-1 for white hens, p < 0.01) and feed efficiency (1.97 to 1.87 g feed g-1 egg for brown hens and 1.82 g feed g-1 egg for white hens, p < 0.0001 and p = 0.11). The higher feed consumption for the brown hens stemmed from their heavier body mass (1.81 to 1.78 kg vs. 1.56 to 1.53 kg for white hens). Manure moisture content was higher for the brown hens than for the white hens, although the dry-matter manure production was not significantly different. The results further revealed that under the experimental conditions (i.e., higher CP contents of the diet for the white hens than for the brown hens) the white hens had higher NH3 emissions than the brown hens as expressed per hen (37% to 19% higher, p = <0.001 to 0.016), per animal unit (AU, 500 kg live body mass; 59% to 39% higher, p = 0.0007 to 0.007), per unit of egg mass output (41% to 24% higher, p = 0.01 to 0.09), per unit of feed N consumed (39% to 27% higher, p = 0.01 to <0.0001), and per unit of dry manure (56% to 39% higher, p = 0.001 to 0.007). Certain differences existed in production performance among strains within the brown or white hens, but no differences in NH3 emissions were detected. Because of the relatively small sample size (number of hens involved) and the relatively short monitoring period, the results should be referenced with these limitations in mind. Further larger-scale studies with longer monitoring periods to verify these findings are warranted.

Collaboration


Dive into the Kristjan Bregendahl's collaboration.

Top Co-Authors

Avatar

B. J. Kerr

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongwei Xin

American Society of Agricultural and Biological Engineers

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong Li

University of Delaware

View shared research outputs
Top Co-Authors

Avatar

M. T. Kidd

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Thomas E. Weber

United States Department of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge