Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. Lanceri is active.

Publication


Featured researches published by L. Lanceri.


ieee nuclear science symposium | 2008

Development of deep N-well MAPS in a 130 nm CMOS technology and beam test results on a 4k-pixel matrix with digital sparsified readout

G. Rizzo; C. Avanzini; G. Batignani; S. Bettarini; F. Bosi; G. Calderini; M. Ceccanti; R. Cenci; A. Cervelli; F. Crescioli; Mauro Dell'Orso; F. Forti; P. Giannetti; M. A. Giorgi; A. Lusiani; S. Gregucci; P. Mammini; G. Marchiori; M. Massa; F. Morsani; N. Neri; E. Paoloni; M. Piendibene; L. Sartori; J. Walsh; E. Yurtsev; M. Manghisoni; V. Re; G. Traversi; M. Bruschi

We report on further developments of our recently proposed design approach for a full in-pixel signal processing chain of deep n-well (DNW) MAPS sensors, by exploiting the triple well option of a CMOS 0.13 μm process. The optimization of the collecting electrode geometry and the re-design of the analog circuit to decrease power consumption have been implemented in two versions of the APSEL chip series, namely “APSEL3T1” and “APSEL3T2”. The results of the characterization of 3x3 pixel matrices with full analog output with photons from 55Fe and electrons from 90Sr are described. Pixel equivalent noise charge (ENC) of 46 e- and 36 e- have been measured for the two versions of the front-end implemented toghether with signal-to-noise ratios between 20 and 30 for Minimum Ionizing Particles. In order to fully exploit the readout capabilities of our MAPS, a dedicated fast readout architecture performing on-chip data sparsification and providing the timing information for the hits has been implemented in the prototype chip “APSEL4D”, having 4096 pixels. The criteria followed in the design of the readout architecture are reviewed. The implemented readout architecture is data-driven and scalable to chips larger than the current one, which has 32 rows and 128 columns. Tests concerning the functional characterization of the chip and response to radioactive sources have shown encouraging preliminary results. A successful beam test took place in September 2008. Preliminary measurements of the APSEL4D charge collection efficiency and resolution confirmed the DNW device is working well. Moreover the data driven approach of the readout chips has been successfully used to demonstrate the possibility to build a Level 1 trigger system based on Associative Memories.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1999

The small angle tile calorimeter in the DELPHI experiment

S.J. Alvsvaag; M. Bari; G. Barreira; A. C. Benvenuti; M. Bigi; M. Bonesini; M. Bozzo; Tiziano Camporesi; H. Carling; V. Cassio; L. Castellani; R. Cereseto; F. Chignoli; G. Della Ricca; D.R. Dharmasiri; M. Espirito Santo; E. Falk; A. B. Fenyuk; Pablo A. Ferrari; D. Gamba; V. Giordano; Yu. P. Gouz; M. Guerzoni; S. Gumenyuk; V. Hedberg; G. Jarlskog; A. N. Karyukhin; A. Klovning; A. Konoplyannikov; I. Kronkvist

Abstract The Small angle TIle Calorimeter (STIC) provides calorimetric coverage in the very forward region of the DELPHI experiment at the CERN LEP collider. The structure of the calorimeters, built with a so-called “shashlik” technique, gives a perfectly hermetic calorimeter and still allows for the insertion of tracking detectors within the sampling structure to measure the direction of the showering particle. A charged-particle veto system, composed of two scintillator layers, makes it possible to trigger on single photon events and provides e–γ separation. Results are presented from the extensive studies of these detectors in the CERN testbeams prior of installation and of the detector performance at LEP.


ieee nuclear science symposium | 2007

Recent development on triple well 130 nm CMOS MAPS with in-pixel signal processing and data sparsification capability

G. Rizzo; G. Batignani; S. Bettarini; F. Bosi; G. Calderini; R. Cenci; A. Cervelli; Mauro Dell'Orso; F. Forti; P. Giannetti; M. A. Giorgi; A. Lusiani; G. Marchiori; M. Massa; F. Morsani; N. Neri; E. Paoloni; J. Walsh; C. Andreoli; Luigi Gaioni; E. Pozzati; Lodovico Ratti; V. Speziali; M. Manghisoni; V. Re; G. Traversi; M. Bomben; L. Bosisio; G. Giacomini; L. Lanceri

A different approach to the design of CMOS MAPS has recently been proposed. By exploiting the triple well option of a CMOS commercial process, a deep n-well (DNW) MAPS sensor has been realized with a full in-pixel signal processing chain: charge preamplifier, shaper, discriminator and a latch. This readout approach beeing compatible with data sparsification will improve the readout speed potential of MAPS sensors. The first protoype chips, realized with STMicroelectronics 130 nm triple well process, proved the new design proposed for DNW MAPS is viable with a good sensitivity to photons from 55Fe and electrons from 90Sr. Extensive tests performed to characterize the second generation of the APSEL chips based on the DNW MAPS design are reported. Small 3times3 pixel matrices with full analog output have been tested with radioactive sources to characterize charge collection. Pixel noise equivalent charge (ENC) of 50 e- and signal-to-noise ratio for MIPs of about 14 have been measured. Improved pixel noise and reduced threshold dispersion (about 100 e-) have been measured in the 8times8 matrix with a sequential readout. Based on the new DNW MAPS design a dedicated fast readout architecture to perform on-chip data sparsification is currently under development. The aim is to incorporate in the same detector the advantages of the thin CMOS sensors and similar functionalities as in hybrid pixels.


ieee nuclear science symposium | 2008

The associative memory for the self-triggered SLIM5 silicon telescope

G. Batignani; S. Bettarini; G. Calderini; R. Cenci; A. Cervelli; F. Crescioli; Mauro Dell'Orso; F. Forti; P. Giannetti; M. A. Giorgi; A. Lusiani; S. Gregucci; G. Marchiori; F. Morsani; N. Neri; E. Paoloni; M. Piendibene; G. Rizzo; L. Sartori; Jj Walsh; E. Yurstev; C. Andreoli; Luigi Gaioni; E. Pozzati; Lodovico Ratti; V. Speziali; M. Manghisoni; V. Re; G. Traversi; M. Bomben

Modern experiments search for extremely rare processes hidden in much larger background levels. As the experiment complexity, the accelerator backgrounds and luminosity increase we need increasingly exclusive selections to efficiently select the rare events inside the huge background. We present a fast, high-quality, track-based event selection for the self-triggered SLIM5 silicon telescope. This is an R&D experiment whose innovative trigger will show that high rejection factors and manageable trigger rates can be achieved using fine-granularity, low-material tracking detectors.


ieee nuclear science symposium | 2006

Development of 130nm CMOS Monolithic Active Pixels with In-pixel Signal Processing

F. Forti; C. Andreoli; G. Batignani; S. Bettarini; F. Bosi; L. Bosisio; M. Bruschi; G. Calderini; R. Cenci; G.-F. Dalla Betta; Mauro Dell'Orso; G. Fontana; A. Gabrielli; D. Gamba; B. Giacobbe; G. Giacomini; P. Giannetti; M. A. Giorgi; G. Giraudo; L. Lanceri; A. Lusiani; M. Manghisoni; G. Marchiori; P. Mereu; F. Morsani; N. Neri; Lucio Pancheri; E. Paoloni; E. Pozzati; I. Rachevskaia

We developed monolithic active pixel detectors that exploit the triple well option of CMOS 130 nm technology to implement analog and digital signal processing at the pixel level. The charge collecting element is realized using the deep N-well (DNW) and partially overlaps the analog circuit. With this scheme we were able to implement a full in-pixel signal processing chain, composed of a charge preamplifier, shaper, discriminator, and latch. This approach has been validated by a first prototype (APSEL0), and we report here on the extensive measurements performed on the second prototype (APSEL1), containing various single pixel structures with analog readout and an 8 times 8 matrix of 50 times 50 mum2 pixels with sequential digital readout. For 900 mum2 pixels the equivalent noise charge has been measured to be 40 e-, with a S/N ratio of about 30 for the 55Fe 5.9 keV signal. The matrix readout has been tested up to 30 MHz and the crosstalk between pixels characterized. The threshold dispersion and the noise of the pixels in the matrix have been measured through noise scans. These measurements confirm the viability of the triple well process for MAPS fabrication, and indicate the design improvements for the next prototype chip (APSEL2).


ieee nuclear science symposium | 2011

2D and 3D thin pixel technologies for the Layer0 of the SuperB Silicon Vertex Tracker

F. Giorgia; C. Avanzini; G. Batignani; S. Bettarini; F. Bosi; G. Casarosa; M. Ceccanti; A. Cervelli; F. Forti; M. A. Giorgi; P. Mammini; F. Morsani; B. Oberhof; E. Paoloni; A. Perez; A. Profeti; G. Rizzo; J. Walsh; A. Lusiani; M. Manghisoni; V. Re; G. Traversi; R. Di Sipio; L. Fabbri; A. Gabrielli; C. Sbarra; N. Semprini; S. Valentinetti; Marco Villa; A. Zoccoli

The high luminosity asymmetric e+e− collider SuperB, recently approved by the Italian Government, is designed to deliver a luminosity greater than 1036cm−2s−1 with moderate beam currents and a reduced center of mass boost with respect to earlier B-Factories. An improved vertex resolution is required for precise time-dependent measurements and the SuperB Silicon Vertex Tracker will be equipped with an innermost layer of small radius (about 1.5 cm), resolution of 10 µm in both coordinates, low material budget (< 1% X0), and able to withstand a hit background rate of several tens of MHz/cm2. The ambitious goal of designing a thin pixel device matching these stringent requirements is being pursued with specific R&D programs on different technologies: CMOS MAPS, pixel sensors in vertical integration technology and hybrid pixels with small pitch and reduced material budget. The latest results on the characterization of the various pixel devices realized for the SuperB Layer0 will be presented.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1989

Transverse profile of electron showers in a lead-glass calorimeter

F. Bianchi; E. Castelli; P. Checchia; R. Cirio; Mp Clara; A. De Angelis; A. Ferrer; G. Galeazzi; D. Gamba; U. Gasparini; M Innocente; L. Lanceri; I Lippi; A. Lopez; J. Marco; Caridad Martinez; Mirco Mazzucato; E Menichetti; M Pegoraro; C. Pinori; P. Poropat; R. Ragazzon; G Rinaudo; Alessandra Romero; P. Ronchese; A. Ruiz; F. Scuri; A. Sebastia; M. Sessa; F. Simonetto

Abstract As a part of a large experimental program aiming to produce high quality calibration data for the Forward ElectroMagnetic Calorimeter (FEMC) of the DELPHI detector at LEP, special runs were devoted to the study of the transverse profile of electromagnetic showers in lead glass. Results of this study are presented.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1995

The silicon shower maximum detector for the STIC

S.J. Alvsvaag; O.A. Maeland; A. Klovning; A. C. Benvenuti; V. Giordano; M. Guerzoni; F. L. Navarria; M.G. Verardi; Tiziano Camporesi; E. Vallazza; M. Bozzo; R. Cereseto; G. Barreira; M. Espirito Santo; A. Maio; A. Onofre; M. Pimenta; B. Tome; H. Carling; V. Hedberg; G. Jarlskog; I. Kronkvist; M. Bonesini; Pablo A. Ferrari; S. Gumenyuk; P. Negri; M. Paganoni; L. Petrovykh; D.R. Dharmasiri; B. Nossum

The structure of a shashlik calorimeter allows the insertion of tracking detectors within the longitudinal sampling to improve the accuracy in the determination of the direction of the showering particle and the eπ separation ability. The new forward calorimeter of the DELPHI detector has been equipped with two planes of silicon pad detectors respectively after 4 and 7.4 radiation lengths. The novelty of these silicon detectors is that to cope with the shashlik readout fibers, they had to incorporate 1.4 mm holes every cm2. The detector consists of circular strips with a radial pitch of 1.7 mm and an angular granularity of 22.5°, read out by means of the MX4 preamplifier. The preamplifier is located at 35 cm from the silicon detector and the signal is carried by Kapton cables bonded to the detector. The matching to the MX4 input pitch of 44 μm was made by a specially developed fanin hybrid.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2003

Status and future plans of the BABAR silicon vertex tracker

V. Re; D. Kirkby; J. W. Berryhill; S. Burke; D. Callahan; C. Campagnari; B. Dahmes; Daniel E. Hale; P.A. Hart; S. Kyre; S. Levy; Owen Rosser Long; Ma Mazur; J. D. Richman; J. Stoner; W. Verkerke; J. Beringer; A. M. Eisner; M. Grothe; W. S. Lockman; T. Pulliam; A. Seiden; W. Walkowiak; M. G. Wilson; C. Borean; C. Bozzi; L. Piemontese; S. Laplace; A. B. Breon; D. N. Brown

Abstract A brief summary of the design goals, description, and performance of the BABAR Silicon Vertex Tracker is given. Results from radiation hardness tests are discussed, which indicate satisfactory operation up to 5 Mrad of accumulated radiation. The local alignment procedure has made significant improvements recently, and four readout sections were recovered during the BABAR shutdown in 2002.


nuclear science symposium and medical imaging conference | 2010

Thin pixel development for the Layer0 of the SuperB Silicon Vertex Tracker

G. Casarosa; C. Avanzini; G. Batignani; S. Bettarini; F. Bosi; M. Ceccanti; R. Cenci; A. Cervelli; F. Crescioli; Mauro Dell'Orso; F. Forti; P. Giannetti; Marcello Giorgi; A. Lusiani; S. Gregucci; P. Mammini; G. Marchiori; M. Massa; F. Morsani; Nicola Neri; Eugenio Paoloni; M. Piendibene; A. Profeti; L. Sartori; J. Walsh; E. Yurtsev; M. Manghisoni; V. Re; G. Traversi; M. Bruschi

The SuperB asymmetric e<sup>+</sup> e<sup>−</sup> collider has been designed to deliver a luminosity greater than 10<sup>36</sup> cm<sup>−2</sup> s<sup>−1</sup> maintaining moderate beam currents. Comparing to current B-Factories, the reduced center-of-mass boost of the SuperB machine requires an improved vertex resolution to allow precision measurements sensitive to New Physics. Therefore the SuperB Silicon Vertex Tracker will be equipped with an innermost Layer0 with a radius of about 1.5 cm, high granularity, low material budget and able to withstand a background rate of several MHz/cm<sup>2</sup>. We report on the status of the R&D on the different options under study for the Layer0: DNW MAPS, hybrid pixels and thin pixels developed with vertical integration technology.

Collaboration


Dive into the L. Lanceri's collaboration.

Top Co-Authors

Avatar

V. Re

University of Pavia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Cenci

Scuola Normale Superiore di Pisa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Morsani

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Researchain Logo
Decentralizing Knowledge