L. Tenorio
University of California, Berkeley
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by L. Tenorio.
The Astrophysical Journal | 1993
A. Kogut; C. Lineweaver; George F. Smoot; C. L. Bennett; A. J. Banday; N. W. Boggess; Edward S. Cheng; G. De Amici; Dale J. Fixsen; G. Hinshaw; P. D. Jackson; Michael A. Janssen; P. Keegstra; K. Loewenstein; P. M. Lubin; John C. Mather; L. Tenorio; Ron Weiss; D. T. Wilkinson; E. L. Wright
We present a determination of the cosmic microwave background dipole amplitude and direction from the COBE Differential Microwave Radiometers (DMR) first year of data. Data from the six DMR channels are consistent with a Doppler-shifted Planck function of dipole amplitude ΔT=3.365±0.027 mK toward direction (l II , b II )=(264°.4±0°.3, 48°.4±0°.5). The implied velocity of the Local Group with respect to the CMB rest frame is v LG =627±22 km s −1 toward (l II , b II )=(276°±3°, 30°±3°). DMR has also mapped the dipole anisotropy resulting from the Earths orbital motion about the Solar system barycenter, yielding a measurement of the monopole CMB temperature T 0 at 31.5, 53, and 90 GHz, T 0 =2.75±0.05 KWe present a determination of the cosmic microwave background dipole amplitude and direction from the COBE Differential Microwave Radiometers (DMR) first year of data. Data from the six DMR channels are consistent with a Doppler-shifted Planck function of dipole amplitude Delta T = 3.365 +/-0.027 mK toward direction (l,b) = (264.4 +/- 0.3 deg, 48.4 +/- 0.5 deg). The implied velocity of the Local Group with respect to the CMB rest frame is 627 +/- 22 km/s toward (l,b) = (276 +/- 3 deg, 30 +/- 3 deg). DMR has also mapped the dipole anisotropy resulting from the Earths orbital motion about the Solar system barycenter, yielding a measurement of the monopole CMB temperature at 31.5, 53, and 90 GHz, to be 2.75 +/- 0.05 K.
The Astrophysical Journal | 1996
C. Lineweaver; L. Tenorio; George F. Smoot; P. Keegstra; A. J. Banday; P. M. Lubin
The largest anisotropy in the cosmic microwave background (CMB) is the {approx_equal}3 mK dipole assumed to be due to our velocity with respect to the CMB. Using the 4 year data set from all six channels of the {ital COBE} Differential Microwave Radiometers (DMR), we obtain a best-fit dipole amplitude 3.358{plus_minus}0.001{plus_minus}0.023 mK in the direction ({ital l},{ital b})=(264.31{degrees}{plus_minus}0.04{degree}{plus_minus}0.16{degree} +48.05{degrees}{plus_minus}0.02{degree}{plus_minus}0.09{degree}), where the first uncertainties are statistical and the second include calibration and combined systematic uncertainties. This measurement is consistent with previous DMR and FIRAS results. {copyright} {ital 1996 The American Astronomical Society.}
The Astrophysical Journal | 1994
George F. Smoot; L. Tenorio; A. J. Banday; A. Kogut; E. L. Wright; G. Hinshaw; C. L. Bennett
We use statistical and topological quantities to test the COBE-DMR first year sky maps against the hypothesis that the observed temperature fluctuations reflect Gaussian initial density perturbations with random phases. Recent papers discuss specific quantities as discriminators between Gaussian and non-Gaussian behavior, but the treatment of instrumental noise on the data is largely ignored. The presence of noise in the data biases many statistical quantities in a manner dependent on both the noise properties and the unknown CMB temperature field. Appropriate weighting schemes can minimize this effect, but it cannot be completely eliminated. Analytic expressions are presented for these biases, and Monte Carlo simulations used to assess the best strategy for determining cosmologically interesting information from noisy data. The genus is a robust discriminator that can be used to estimate the power law quadrupole-normalized amplitude independently of the 2-point correlation function. The genus of the DMR data are consistent with Gaussian initial fluctuations with Q_rms = 15.7 +/- 2.2 - (6.6 +/- 0.3)(n - 1) uK where n is the power law index. Fitting the rms temperature variations at various smoothing angles gives Q_rms = 13.2 +/- 2.5 uK and n = 1.7 +0.3 -0.6. While consistent with Gaussian fluctuations, the first year data are only sufficient to rule out strongly non-Gaussian distributions of fluctuations.We use statistical and topological quantities to test the Cosmic Background Explorer (COBE) Differential Microwave Radiometer (DMR) first-year sky maps against the hypothesis that the observed temperature fluctuations reflect Gaussian initial density perturbations with random phases. Recent papers discuss specific quantities as discriminators between Gaussian and non-Gaussian behavior, but the treatment of instrumental noise on the data is largely ignored. The presence of noise in the data biases many statistical quantities in a manner dependent on both the noise properties and the unknown cosmic microwave background temperature field. Appropriate weighting schemes can minimize this effect, but it cannot be completely eliminated. Analytic expressions are presented for these biases, and Monte Carlo simulations are used to assess the best strategy for determining cosmologically interesting information from noisy data. The genus is a robust discriminator that can be used to estimate the power-law quadrupole-normalized amplitude, Q(sub rms-PS), independently of the two-point correlation function. The genus of the DMR data is consistent with Gaussian initial fluctuations with Q(sub rms-PS) = (15.7 +/- 2.2) - (6.6 +/- 0.3)(n - 1) micro-K, where n is the power-law index. Fitting the rms temperature variations at various smoothing angles gives Q(sub rms-PS) = 13.2 +/- 2.5 micro-K and n = 1.7(sup (+0.3) sub (-0.6)). While consistent with Gaussian fluctuations, the first year data are only sufficient to rule out strongly non-Gaussian distributions of fluctuations.
The Astrophysical Journal | 1996
A. Kogut; A.J. Banday; C. L. Bennett; Krzysztof M. Gorski; G. Hinshaw; P. D. Jackson; Phil B. Keegstra; C. Lineweaver; George F. Smoot; L. Tenorio; E. L. Wright
The Differential Microwave Radiometers (DMR) instrument aboard the Cosmic Background Explorer (COBE) has mapped the full microwave sky to mean sensitivity 26 mu K per 7 degrees held of view. The absolute calibration is determined to 0.7 percent with drifts smaller than 0.2 percent per year. We have analyzed both the raw differential data and the pixelized sky maps for evidence of contaminating sources such as solar system foregrounds, instrumental susceptibilities, and artifacts from data recovery and processing. Most systematic effects couple only weakly to the sky maps. The largest uncertainties in the maps result from the instrument susceptibility to Earths magnetic field, microwave emission from Earth, and upper limits to potential effects at the spacecraft spin period. Systematic effects in the maps are small compared to either the noise or the celestial signal: the 95 percent confidence upper limit for the pixel-pixel rms from all identified systematics is less than 6 mu K in the worst channel. A power spectrum analysis of the (A-B)/2 difference maps shows no evidence for additional undetected systematic effects.
The Astrophysical Journal | 1992
A. Kogut; George F. Smoot; C. L. Bennett; E. L. Wright; J. Aymon; G. De Amici; G. Hinshaw; P. D. Jackson; E. Kaita; P. Keegstra; C. Lineweaver; K. Loewenstein; L. Rokke; L. Tenorio; N. W. Boggess; Edward S. Cheng; Samuel Gulkis; Michael G. Hauser; Michael A. Janssen; T. Kelsall; John C. Mather; S. S. Meyer; S. H. Moseley; Thomas L. Murdock; Richard A. Shafer; R. F. Silverberg; Rainer Weiss; D. T. Wilkinson
The Differential Microwave Radiometers (DMR) instrument aboard the Cosmic Background Explorer (COBE) maps the full microwave sky in order to measure the large-angular-scale anisotropy of the cosmic microwave background radiation. Solar system foreground sources, instrumental effects, as well as data recovery and processing, can combine to create statistically significant artifacts in the analyzed data. We discuss the techniques available for the identification and subtraction of these effects from the DMR data and present preliminary limits on their magnitude in the DMR 1 yr maps (Smoot et al. 1992)
The Astrophysical Journal | 1994
E. L. Wright; George F. Smoot; A. Kogut; G. Hinshaw; L. Tenorio; C. Lineweaver; C. L. Bennett; P. M. Lubin
Cosmic anisotrophy produces an excess variance sq sigma(sub sky) in the Delta maps produced by the Differential Microwave Radiometer (DMR) on cosmic background explorer (COBE) that is over and above the instrument noise. After smoothing to an effective resolution of 10 deg, this excess sigma(sub sky)(10 deg), provides an estimate for the amplitude of the primordial density perturbation power spectrum with a cosmic uncertainty of only 12%. We employ detailed Monte Carlo techniques to express the amplitude derived from this statistic in terms of the universal root mean square (rms) quadrupole amplitude, (Q sq/RMS)(exp 0.5). The effects of monopole and dipole subtraction and the non-Gaussian shape of the DMR beam cause the derived (Q sq/RMS)(exp 0.5) to be 5%-10% larger than would be derived using simplified analytic approximations. We also investigate the properties of two other map statistics: the actual quadrupole and the Boughn-Cottingham statistic. Both the sigma(sub sky)(10 deg) statistic and the Boughn-Cottingham statistic are consistent with the (Q sq/RMS)(exp 0.5) = 17 +/- 5 micro K reported by Smoot et al. (1992) and Wright et al. (1992).
The Astrophysical Journal | 1992
C. L. Bennett; George F. Smoot; Michael A. Janssen; Samuel Gulkis; A. Kogut; G. Hinshaw; C. Backus; Michael G. Hauser; John C. Mather; L. Rokke; L. Tenorio; Ron Weiss; D. T. Wilkinson; E. L. Wright; G. De Amici; N. W. Boggess; Edward S. Cheng; P. D. Jackson; P. Keegstra; T. Kelsall; R. Kummerer; C. Lineweaver; S. H. Moseley; Thomas L. Murdock; J. Santana; Richard A. Shafer; R. F. Silverberg
The COBE spacecraft was launched November 18, 1989 UT carrying three scientific instruments into earth orbit for studies of cosmology. One of these instruments, the Differential Microwave Radiometer (DMR), is designed to measure the large-angular-scale temperature anisotropy of the cosmic microwave background radiation at three frequencies (31.5, 53, and 90 GHz). This paper presents three methods used to calibrate the DMR. First, the signal difference between beam-filling hot and cold targets observed on the ground provides a primary calibration that is transferred to space by noise sources internal to the instrument. Second, the moon is used in flight as an external calibration source. Third, the signal arising from the Doppler effect due to the earths motion around the barycenter of the solar system is used as an external calibration source. Preliminary analysis of the external source calibration techniques confirms the accuracy of the currently more precise ground-based calibration. Assuming the noise source behavior did not change from the ground-based calibration to flight, a 0.1-0.4 percent relative and 0.7-2.5 percent absolute calibration uncertainty is derived, depending on radiometer channel.
The Astrophysical Journal | 1994
C. Lineweaver; George F. Smoot; C. L. Bennett; Edward L. Wright; L. Tenorio; A. Kogut; Phil B. Keegstra; G. Hinshaw; A. J. Banday
The Cosmic Background Explorer Satellite Differential Radiometer (COBE DMR) sky maps contain low-level correlated noise. We obtain estimates of the amplitude and pattern of the correlated noise from three techniques: angular averages of the covariance matrix, Monte Carlo simulations of two-point correlation functions and direct analysis of the DMR maps. The results from the three methods are mutually consistent. The noise covariance matrix of a DMR sky maps is diagonal to an accuracy of better than 1%. For a given sky pixel, the dominant noise covariance occure with the ring of pixels at an angular separation of 60 deg due to the 60 deg separation of the DMR horns. The mean covariance at 60 deg is 0.45%((sup +0.18)(sub -0.14)) of the mean variance. Additionally, the variance in a given pixel is 0.7% greater than would be expected from a single beam experiment with the same noise properties. Autocorrelation functions suffer from a approximately 1.5 sigma positive bias at 60 deg while cross-correlations have no bias. Published COBE DMR results are not significantly affected by correlated noise.
Advances in Space Research | 1991
George F. Smoot; C. L. Bennett; A. Kogut; J. Aymon; C. Backus; G. De Amici; K. Galuk; P. D. Jackson; P. Keegstra; L. Rokke; L. Tenorio; S. Torres; S. G. Gulkis; M.G. Hauser; Michael A. Janssen; John C. Mather; Rainer Weiss; D. T. Wilkinson; E. L. Wright; N. W. Boggess; Edward S. Cheng; T. Kelsall; P. M. Lubin; Stephan S. Meyer; S. H. Moseley; Thomas L. Murdock; Richard A. Shafer; R. F. Silverberg
Abstract We review the concept and operation of the Differential Microwave Radiometers (DMR) instrument aboard NASAs Cosmic Background Explorer (COBE) satellite, with emphasis on the software identification and subtraction of potential systematic effects. We present preliminary results obtained from the first six months of DMR data and discuss implications for cosmology.
AIP Conference Proceedings (American Institute of Physics); (United States) | 1991
George F. Smoot; C. L. Bennett; A. Kogut; J. Aymon; C. Backus; G. De Amici; K. Galuk; P. D. Jackson; P. Keegstra; L. Rokke; L. Tenorio; S. G. Gulkis; Michael G. Hauser; Michael A. Janssen; John C. Mather; Rainer Weiss; D. T. Wilkinson; E. L. Wright; N. W. Boggess; Edward S. Cheng; T. Kelsall; P. M. Lubin; Stephan S. Meyer; S. H. Moseley; Thomas L. Murdock; Richard A. Shafer; R. F. Silverberg
The COBE Differential Microwave Radiometers (DMR) instrument has produced preliminary full-sky maps at frequencies 31.5, 53, and 90 GHz. The redundant channels and matched beams at three frequencies distinguish the DMR from previous large-scale surveys. Galactic emission is seen unambiguously at all three frequencies. The only large-scale anisotropy detected in the cosmic microwave background is the dipole anisotropy. There is no clear evidence for any other large-angular-scale feature in the maps. Without correcting for any systematic effects, we are able to place limits {Delta}T/T{sub 0}{lt}3{times}10{sup {minus}5} for the rms quadrupole amplitude, {Delta}T/T{sub 0}{lt}4{times}10{sup {minus}5} for monochromatic fluctuations, and {Delta}T/T{sub 0}{lt}4{times}10{sup {minus}5} for Gaussian fluctuations (all limits are 95% C.L. with T{sub 0}=2.735 K). The data limit {Delta}T/T{sub 0}{lt}10{sup {minus}4} for any feature larger than 7{degree}. We briefly review the DMR and discuss some implications of these results for cosmology.