Laia Rubio
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laia Rubio.
Langmuir | 2009
Gelen Rodríguez; Lucyanna Barbosa-Barros; Laia Rubio; M. Cócera; Avencia Diez; Joan Estelrich; Ramon Pons; Jaume Caelles; Alfonso de la Maza; O. López
Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy was applied to study the effects of the bicelles formed by dimyristoyl-glycero-phosphocholine (DMPC) and dihexanoyl-glycero-phosphocholine (DHPC) in porcine stratum corneum (SC) in vitro. A comparison of skin samples treated and untreated with bicelles at different temperatures was carried out. The analysis of variations after treatment in the position of the symmetric CH2 stretching, CH2 scissoring, and CH2 rocking vibrations reported important information about the effect of bicelles on the skin. Bicellar systems caused a phase transition from the gel or solid state to the liquid crystalline state in the lipid conformation of SC, reflecting the major order-disorder transition from hexagonally packed to disordered chains. Grazing incidence small and wide X-ray scattering (GISAXS and GIWAXS) techniques confirmed this effect of bicelles on the SC. These results are probably related to with the permeabilizing effect previously described for the DMPC/DHPC bicelles.
Small | 2012
Lucyanna Barbosa-Barros; Gelen Rodríguez; Clara Barba; M. Cócera; Laia Rubio; Joan Estelrich; Alfonso de la Maza; O. López
Bicelles emerge as promising membrane models, and because of their attractive combination of lipid composition, small size and morphological versatility, they become new targets in skin research. Bicelles are able to modify skin biophysical parameters and modulate the skins barrier function, acting to enhance drug penetration. Because of their nanostructured assemblies, bicelles have the ability to penetrate through the narrow intercellular spaces of the stratum corneum of the skin to reinforce its lipid lamellae. The bicelle structure also allows for the incorporation of different molecules that can be carried through the skin layers. All of these characteristics can be modulated by varying the lipid composition and experimental conditions. The remarkable versatility of bicelles is their most important characteristic, which makes their use possible in various fields. This system represents a platform for dermal applications. In this review, an overview of the main properties of bicelles and their effects on the skin are presented.
International Journal of Pharmaceutics | 2010
Laia Rubio; Cristina Alonso; Gelen Rodríguez; L. Barbosa-Barros; L. Coderch; A. de la Maza; J. L. Parra; O. López
This work evaluates the effect of different bicellar systems on the percutaneous absorption of diclofenac diethylamine (DDEA) using two different approaches. In the first case, the drug was included in bicellar systems, which were applied on the skin and, in the second case, the skin was treated by applying bicellar systems without drug before to the application of a DDEA aqueous solution. The characterization of bicellar systems showed that the particle size decreased when DDEA was encapsulated. Percutaneous absorption studies demonstrated a lower penetration of DDEA when the drug was included in bicellar systems than when the drug was applied in an aqueous solution. This effect was possibly due to a certain rigidity of the bicellar systems caused by the incorporation of DDEA. The absorption of DDEA on skin pretreated with bicelles increased compared to the absorption of DDEA on intact skin. Bicelles without DDEA could cause certain disorganization of the SC barrier function, thereby facilitating the percutaneous penetration of DDEA subsequently applied. Thus, depending on their physicochemical parameters and on the application conditions, these systems have potential enhancement or retardant effects on percutaneous absorption that result in an interesting strategy, which may be used in future drug delivery applications.
Langmuir | 2010
Gelen Rodríguez; Laia Rubio; M. Cócera; Joan Estelrich; Ramon Pons; Alfonso de la Maza; O. López
The effect of bicelles formed by dipalmitoylphosphatidylcholine (DPPC)/dihexanoylphosphatidylcholine (DHPC) on stratum corneum (SC) lipids was studied by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy at different temperatures. Analysis of the lipid organization in terms of chain conformational order and lateral packing shows that the use of bicelles hampers the fluidification of SC lipids with temperature and leads to a lateral packing corresponding to a stable hexagonal phase. Grazing incidence small- and wide-angle X-ray scattering (GISAXS and GIWAXS) techniques confirm these results and give evidence of higher lamellar order after treatment with these bicelles. Additionally, the effects of DPPC/DHPC and dimyristoylphosphatidylcholine (DMPC)/DHPC bicelles at different SC depths were compared. The combination of ATR-FTIR spectroscopy and the tape-stripping method was very useful for this purpose.
International Journal of Dermatology | 2011
Laia Rubio; Cristina Alonso; O. López; Gelen Rodríguez; L. Coderch; Jaime Notario; Alfonso de la Maza; Jose Luis Parra
Background Normally, percutaneous absorption tests are carried out using skin biopsies for an apparent and acceptable physiological condition. However, under different pathological conditions, the stratum corneum (SC) barrier function is impaired.
Biophysical Journal | 2010
Gelen Rodríguez; Guadalupe Soria; Elisenda Coll; Laia Rubio; Lucyanna Barbosa-Barros; Anna M. Planas; Joan Estelrich; Alfons de la Maza; O. López
Bicelles are discoidal phospholipid nanostructures at high lipid concentrations. Under dilute conditions, bicelles become larger and adopt a variety of morphologies. This work proposes a strategy to preserve the discoidal morphology of bicelles in environments with high water content. Bicelles were formed in concentrated conditions and subsequently encapsulated in liposomes. Later dilution of these new structures, called bicosomes, demonstrated that lipid vesicles were able to isolate and protect bicelles entrapped inside them from the medium. Characterization of systems before and after dilution by dynamic light-scattering spectroscopy and cryo-transmission electron microscopy showed that free bicelles changed in size and morphology, whereas encapsulated bicelles remained unaltered by the effect of dilution. Free and entrapped bicelles (containing the paramagnetic contrast agent gadodiamide) were injected into rat brain lateral ventricles. Coronal and sagittal visualization was performed by magnetic resonance imaging. Whereas rats injected with free bicelles did not survive the surgery, those injected with bicosomes did, and a hyperintensity effect due to gadodiamide was observed in the cerebrospinal fluid. These results indicate that bicosomes are a good means of preserving the morphology of bicelles under dilution conditions.
Textile Research Journal | 2010
Laia Rubio; Cristina Alonso; L. Coderch; Jose Luis Parra; M. Martí; Juan Cebrián; Juan Antonio Navarro; Manel Lis; Josep Valldeperas
Biofunctional textiles are materials with new properties and added value. In this work, emphasis was placed on the release capacity of the active principle (caffeine) from the formulation or from the biofunctional textile. In addition, a new in vitro methodology of percutaneous absorption was designed to demonstrate the delivery of encapsulated caffeine from the biofunctional textile to the different skin layers. In the first step, permeation studies through a nylon membrane were performed and the release capacity of caffeine present in the samples was quantified. In the second step, it was possible to detect the presence of caffeine in the different layers of the skin, while maintaining a close contact between the biofunctional textile and the skin by using pressure during the percutaneous absorption test. The new system is satisfactory for measuring the pass of the active principle from the biofunctional textile to the different skin layers.
Free Radical Biology and Medicine | 2014
Cristina Alonso; Laia Rubio; Sonia Touriño; M. Martí; Clara Barba; Francisco Fernández-Campos; L. Coderch; Jose Luis Parra
A new strategy was designed to evaluate the antioxidant effectiveness of five topically applied polyphenols following skin penetration profiles. The antioxidants were the following polyphenol derivatives: epicatechin, resveratrol, rutin, quercetin, and trolox, which was used as the reference antioxidant. The hydrophilic/lipophilic character of these compounds was evaluated, and their antioxidant activity was measured by the DPPH method. The percutaneous absorption of these polyphenols was obtained by an in vitro methodology using porcine skin biopsies. This methodology involves the quantification of the antioxidants present in each specific skin layer to evaluate antioxidant effectiveness. The antioxidant activity in each skin layer was also determined by the DPPH method. The results indicated that lipophilic antioxidants (epicatechin, resveratrol, quercetin, and trolox) penetrated deeper into the skin layers, whereas a more hydrophilic compound, rutin, remained on the skin surface. The antioxidant evaluation of each skin compartment suggested that resveratrol and rutin were the most effective topically applied compounds in view of their antioxidant activity and their skin penetration profile.
Colloids and Surfaces B: Biointerfaces | 2011
Gelen Rodríguez; Lucyanna Barbosa-Barros; Laia Rubio; M. Cócera; A. de la Maza; O. López
The characterization of different bicellar aggregates and the effects of these systems on the stratum corneum (SC) microstructure have been studied. Dynamic light scattering (DLS) and freeze fracture electron microscopy (FFEM) techniques showed that both of the systems studied, dimyristoyl-phosphatidylcholine/dihexanoyl-phosphocholine (DMPC/DHPC) and dipalmitoyl-phosphocholine (DPPC)/DHPC, were formed by small discoidal aggregates at room temperature (20°C). Treating skin with DMPC/DHPC bicelles does not affect the SC lipid microstructure, whereas bicellar systems formed by DPPC and DHPC can promote the formation of new structures in the SC lipid domains. This indicates the passage of lipids from bicelles through the SC layers and also a possible interaction of these lipids with the SC lipids. Given the absence of surfactant in the bicellar composition and the small size of these structures, the use of these smart nano-systems offers great advantages over other lipid systems for dermatological purposes. Bicelles could be promising applications as drug carriers through the skin. This contribution, based on the new biological use of bicelles, may be useful to scientists engaged in colloid science and offers a new tool for different applications in skin and cosmetic research.
Journal of Photochemistry and Photobiology B-biology | 2009
Cristina Alonso; Clara Barba; Laia Rubio; Sonya Scott; Anna Kilimnik; L. Coderch; Jaime Notario; Jose Luis Parra
Environmental risks, particularly UV radiation, provide a challenge to the function of the skin barrier. Protective measures such as the use of antioxidant products represent a possible method of providing protection to the skin. This paper reports the development of a non-invasive ex vivo method using tape strips of the outermost layers of stratum corneum (SC) from human volunteers in order to determine the effectiveness of an antioxidant emulsion topically applied to prevent lipid peroxidation (LPO) in the horny layer after an UV irradiation exposure. Two different formulations were used: formulation (A), containing Vitamin A, E and C, and formulation (B) containing fish extract. Both formulations were topically applied in vivo on volunteer forearms; then, a tape stripping of the SC of each volunteer was carried out. The lipid peroxidation was measured ex vivo after an UV irradiation of the SC samples. The amount of SC stripped to evaluate differences in lipid peroxidation, the UV irradiation intensity to form lipid peroxides and the accuracy of lipid peroxide analysis were optimized in this methodology using formulation (A). After an exposure application of seven days, a group of three strips of the outermost layers of SC of volunteers was irradiated with an intensity of 182.7 J/cm(2) to quantify the LPO inhibition. The percentage of LPO inhibition obtained after topical application of both formulations was in the range of 40-58% demonstrating the effectiveness of the formulations topically applied against lipid peroxidation on human SC. This methodology may be used as a quality control tool to determine ex vivo the percentage of the LPO inhibition on human SC for a variety of antioxidants topically applied.