Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura McDowell is active.

Publication


Featured researches published by Laura McDowell.


Journal of Medicinal Chemistry | 2011

Use of structure-based design to discover a potent, selective, in vivo active phosphodiesterase 10A inhibitor lead series for the treatment of schizophrenia.

Christopher John Helal; Zhijun Kang; Xinjun Hou; Jayvardhan Pandit; Thomas A. Chappie; John M. Humphrey; Eric S. Marr; Kimberly F. Fennell; Lois K. Chenard; Carol B. Fox; Christopher J. Schmidt; Robert Williams; Douglas S. Chapin; Judith A. Siuciak; Lorraine A. Lebel; Frank S. Menniti; Julia Cianfrogna; Kari R. Fonseca; Frederick R. Nelson; Rebecca O'connor; Mary Macdougall; Laura McDowell; Spiros Liras

Utilizing structure-based virtual library design and scoring, a novel chimeric series of phosphodiesterase 10A (PDE10A) inhibitors was discovered by synergizing binding site interactions and ADME properties of two chemotypes. Virtual libraries were docked and scored for potential binding ability, followed by visual inspection to prioritize analogs for parallel and directed synthesis. The process yielded highly potent and selective compounds such as 16. New X-ray cocrystal structures enabled rational design of substituents that resulted in the successful optimization of physical properties to produce in vivo activity and to modulate microsomal clearance and permeability.


Protein Science | 2008

Structure of a small-molecule inhibitor complexed with GlmU from Haemophilus influenzae reveals an allosteric binding site

Igor Mochalkin; Sandra Lightle; Lakshmi Narasimhan; Dirk Bornemeier; Michael Melnick; Steven VanderRoest; Laura McDowell

N‐Acetylglucosamine‐1‐phosphate uridyltransferase (GlmU) is an essential enzyme in aminosugars metabolism and an attractive target for antibiotic drug discovery. GlmU catalyzes the formation of uridine‐diphospho‐N‐acetylglucosamine (UDP‐GlcNAc), an important precursor in the peptidoglycan and lipopolisaccharide biosynthesis in both Gram‐negative and Gram‐positive bacteria. Here we disclose a 1.9 Å resolution crystal structure of a synthetic small‐molecule inhibitor of GlmU from Haemophilus influenzae (hiGlmU). The compound was identified through a high‐throughput screening (HTS) configured to detect inhibitors that target the uridyltransferase active site of hiGlmU. The original HTS hit exhibited a modest micromolar potency (IC50 ∼ 18 μM in a racemic mixture) against hiGlmU and no activity against Staphylococcus aureus GlmU (saGlmU). The determined crystal structure indicated that the inhibitor occupies an allosteric site adjacent to the GlcNAc‐1‐P substrate‐binding region. Analysis of the mechanistic model of the uridyltransferase reaction suggests that the binding of this allosteric inhibitor prevents structural rearrangements that are required for the enzymatic reaction, thus providing a basis for structure‐guided design of a new class of mechanism‐based inhibitors of GlmU.


Protein Science | 2007

Characterization of substrate binding and catalysis in the potential antibacterial target N-acetylglucosamine-1-phosphate uridyltransferase (GlmU)

Igor Mochalkin; Sandra Lightle; Yaqi Zhu; Jeffrey F. Ohren; Cindy Spessard; Nickolay Y. Chirgadze; Craig Banotai; Michael Melnick; Laura McDowell

N‐Acetylglucosamine‐1‐phosphate uridyltransferase (GlmU) catalyzes the first step in peptidoglycan biosynthesis in both Gram‐positive and Gram‐negative bacteria. The products of the GlmU reaction are essential for bacterial survival, making this enzyme an attractive target for antibiotic drug discovery. A series of Haemophilus influenzae GlmU (hiGlmU) structures were determined by X‐ray crystallography in order to provide structural and functional insights into GlmU activity and inhibition. The information derived from these structures was combined with biochemical characterization of the K25A, Q76A, D105A, Y103A, V223A, and E224A hiGlmU mutants in order to map these active‐site residues to catalytic activity of the enzyme and refine the mechanistic model of the GlmU uridyltransferase reaction. These studies suggest that GlmU activity follows a sequential substrate‐binding order that begins with UTP binding noncovalently to the GlmU enzyme. The uridyltransferase active site then remains in an open apo‐like conformation until N‐acetylglucosamine‐1‐phosphate (GlcNAc‐1‐P) binds and induces a conformational change at the GlcNAc‐binding subsite. Following the binding of GlcNAc‐1‐P to the UTP‐charged uridyltransferase active site, the non‐esterified oxygen of GlcNAc‐1‐P performs a nucleophilic attack on the α‐phosphate group of UTP. The new data strongly suggest that the mechanism of phosphotransfer in the uridyltransferase reaction in GlmU is primarily through an associative mechanism with a pentavalent phosphate intermediate and an inversion of stereochemistry. Finally, the structural and biochemical characterization of the uridyltransferase active site and catalytic mechanism described herein provides a basis for the structure‐guided design of novel antibacterial agents targeting GlmU activity.


Journal of Pharmacology and Experimental Therapeutics | 2012

The 5-Hydroxytryptamine4 Receptor Agonists Prucalopride and PRX-03140 Increase Acetylcholine and Histamine Levels in the Rat Prefrontal Cortex and the Power of Stimulated Hippocampal θ Oscillations

David E. Johnson; Elena M. Drummond; Sarah Grimwood; Aarti Sawant-Basak; Emily Miller; Elaine E. Tseng; Laura McDowell; Michelle Vanase-Frawley; Katherine Fisher; David M. Rubitski; Kim Stutzman-Engwall; Robin T. Nelson; Weldon Horner; Roxanne Gorczyca; Mihály Hajós; Chester J. Siok

5-Hydroxytryptamine (5-HT)4 receptor agonists reportedly stimulate brain acetylcholine (ACh) release, a property that might provide a new pharmacological approach for treating cognitive deficits associated with Alzheimers disease. The purpose of this study was to compare the binding affinities, functional activities, and effects on neuropharmacological responses associated with cognition of two highly selective 5-HT4 receptor agonists, prucalopride and 6,7-dihydro-4-hydroxy-7-isopropyl-6-oxo-N-[3-(piperidin-1-yl)propyl]thieno[2,3-b]pyridine-5-carboxamide (PRX-03140). In vitro, prucalopride and PRX-03140 bound to native rat brain 5-HT4 receptors with Ki values of 30 nM and 110 nM, respectively, and increased cAMP production in human embryonic kidney-293 cells expressing recombinant rat 5-HT4 receptors. In vivo receptor occupancy studies established that prucalopride and PRX-03140 were able to penetrate the brain and bound to 5-HT4 receptors in rat brain, achieving 50% receptor occupancy at free brain exposures of 330 nM and 130 nM, respectively. Rat microdialysis studies revealed that prucalopride maximally increased ACh and histamine levels in the prefrontal cortex at 5 and 10 mg/kg, whereas PRX-03140 significantly increased cortical histamine levels at 50 mg/kg, failing to affect ACh release at doses lower than 150 mg/kg. In combination studies, donepezil-induced increases in cortical ACh levels were potentiated by prucalopride and PRX-03140. Electrophysiological studies in rats demonstrated that both compounds increased the power of brainstem-stimulated hippocampal θ oscillations at 5.6 mg/kg. These findings show for the first time that the 5-HT4 receptor agonists prucalopride and PRX-03140 can increase cortical ACh and histamine levels, augment donepezil-induced ACh increases, and increase stimulated-hippocampal θ power, all neuropharmacological parameters consistent with potential positive effects on cognitive processes.


Journal of Medicinal Chemistry | 2012

Application of structure-based drug design and parallel chemistry to identify selective, brain penetrant, in vivo active phosphodiesterase 9A inhibitors.

Michelle Marie Claffey; Christopher John Helal; Patrick Robert Verhoest; Zhijun Kang; Kristina S. Fors; Stanley Jung; Jiaying Zhong; Mark W. Bundesmann; Xinjun Hou; Shenping Lui; Robin J. Kleiman; Michelle Vanase-Frawley; Anne W. Schmidt; Frank S. Menniti; Christopher J. Schmidt; William E. Hoffman; Mihály Hajós; Laura McDowell; Rebecca E. O’Connor; Mary MacDougall-Murphy; Kari R. Fonseca; Stacey L. Becker; Frederick R. Nelson; Spiros Liras

Phosphodiesterase 9A inhibitors have shown activity in preclinical models of cognition with potential application as novel therapies for treating Alzheimers disease. Our clinical candidate, PF-04447943 (2), demonstrated acceptable CNS permeability in rats with modest asymmetry between central and peripheral compartments (free brain/free plasma = 0.32; CSF/free plasma = 0.19) yet had physicochemical properties outside the range associated with traditional CNS drugs. To address the potential risk of restricted CNS penetration with 2 in human clinical trials, we sought to identify a preclinical candidate with no asymmetry in rat brain penetration and that could advance into development. Merging the medicinal chemistry strategies of structure-based design with parallel chemistry, a novel series of PDE9A inhibitors was identified that showed improved selectivity over PDE1C. Optimization afforded preclinical candidate 19 that demonstrated free brain/free plasma ≥ 1 in rat and reduced microsomal clearance along with the ability to increase cyclic guanosine monophosphosphate levels in rat CSF.


Journal of Medicinal Chemistry | 2012

Identification of Multiple 5-HT4 Partial Agonist Clinical Candidates for the Treatment of Alzheimer’s Disease

Michael Aaron Brodney; David E. Johnson; Aarti Sawant-Basak; Karen J. Coffman; Elena M. Drummond; Emily L. Hudson; Katherine Fisher; Hirohide Noguchi; Nobuaki Waizumi; Laura McDowell; Alexandros Papanikolaou; Betty Pettersen; Anne W. Schmidt; Elaine E. Tseng; Kim Stutzman-Engwall; David M. Rubitski; Michelle Vanase-Frawley; Sarah Grimwood

The cognitive impairments observed in Alzheimers disease (AD) are in part a consequence of reduced acetylcholine (ACh) levels resulting from a loss of cholinergic neurons. Preclinically, serotonin 4 receptor (5-HT(4)) agonists are reported to modulate cholinergic function and therefore may provide a new mechanistic approach for treating cognitive deficits associated with AD. Herein we communicate the design and synthesis of potent, selective, and brain penetrant 5-HT(4) agonists. The overall goal of the medicinal chemistry strategy was identification of structurally diverse clinical candidates with varying intrinsic activities. The exposure-response relationships between binding affinity, intrinsic activity, receptor occupancy, drug exposure, and pharmacodynamic activity in relevant preclinical models of AD were utilized as key selection criteria for advancing compounds. On the basis of their excellent balance of pharmacokinetic attributes and safety, two lead 5-HT(4) partial agonist candidates 2d and 3 were chosen for clinical development.


Bioorganic & Medicinal Chemistry Letters | 2010

A novel series of [3.2.1] azabicyclic biaryl ethers as α3β4 and α6/4β4 nicotinic receptor agonists

John A. Lowe; Shari L. DeNinno; Jotham Wadsworth Coe; Lei Zhang; Scot Mente; Raymond S. Hurst; Robert J. Mather; Karen M. Ward; Alka Shrikhande; Hans Rollema; David E. Johnson; Weldon Horner; Roxanne Gorczyca; F. David Tingley; Rouba Kozak; Mark J. Majchrzak; Theresa Tritto; Jen Sadlier; Chris L. Shaffer; Brenda R. Ellerbrock; Sarah Osgood; Mary Macdougall; Laura McDowell

We report the synthesis of a series of [3.2.1]azabicyclic biaryl ethers as selective agonists of alpha3- and alpha6-containing nicotinic receptors. In particular, compound 17a from this series is a potent alpha3beta4 and alpha6/4beta4 receptor agonist in terms of both binding and functional activity. Compound 17a also shows potent in vivo activity in CNS-mediated animal models that are sensitive to antipsychotic drugs. Compound 17a may thus be a useful tool for studying the role of alpha3beta4 and alpha6/4beta4 nicotinic receptors in CNS pharmacology.


Journal of Medicinal Chemistry | 2017

Application of Structure-Based Design and Parallel Chemistry to Identify a Potent, Selective, and Brain Penetrant Phosphodiesterase 2A Inhibitor.

Christopher John Helal; Eric P. Arnold; Tracey Boyden; Cheng Chang; Thomas A. Chappie; Kimberly F. Fennell; Michael D. Forman; Mihály Hajós; John F. Harms; William E. Hoffman; John M. Humphrey; Zhijun Kang; Robin J. Kleiman; Bethany L. Kormos; Che-Wah Lee; Jiemin Lu; Noha Maklad; Laura McDowell; Scot Mente; Rebecca E. O’Connor; Jayvardhan Pandit; Mary Piotrowski; Anne W. Schmidt; Christopher J. Schmidt; Hirokazu Ueno; Patrick Robert Verhoest; Edward X. Yang

Phosphodiesterase 2A (PDE2A) inhibitors have been reported to demonstrate in vivo activity in preclinical models of cognition. To more fully explore the biology of PDE2A inhibition, we sought to identify potent PDE2A inhibitors with improved brain penetration as compared to current literature compounds. Applying estimated human dose calculations while simultaneously leveraging synthetically enabled chemistry and structure-based drug design has resulted in a highly potent, selective, brain penetrant compound 71 (PF-05085727) that effects in vivo biochemical changes commensurate with PDE2A inhibition along with behavioral and electrophysiological reversal of the effects of NMDA antagonists in rodents. This data supports the ability of PDE2A inhibitors to potentiate NMDA signaling and their further development for clinical cognition indications.


Journal of Medicinal Chemistry | 2018

Identification of a Potent, Highly Selective, and Brain Penetrant Phosphodiesterase 2A Inhibitor Clinical Candidate

Christopher John Helal; Eric P. Arnold; Tracey Boyden; Cheng Chang; Thomas A. Chappie; Ethan L. Fisher; Mihály Hajós; John F. Harms; William E. Hoffman; John M. Humphrey; Jayvardhan Pandit; Zhijun Kang; Robin J. Kleiman; Bethany L. Kormos; Che-Wah Lee; Jiemin Lu; Noha Maklad; Laura McDowell; Dina McGinnis; Rebecca E. O’Connor; Christopher J. O’Donnell; Adam Ogden; Mary Piotrowski; Christopher J. Schmidt; Patricia A. Seymour; Hirokazu Ueno; Nichole Vansell; Patrick Robert Verhoest; Edward X. Yang

Computational modeling was used to direct the synthesis of analogs of previously reported phosphodiesterase 2A (PDE2A) inhibitor 1 with an imidazotriazine core to yield compounds of significantly enhanced potency. The analog PF-05180999 (30) was subsequently identified as a preclinical candidate targeting cognitive impairment associated with schizophrenia. Compound 30 demonstrated potent binding to PDE2A in brain tissue, dose responsive mouse brain cGMP increases, and reversal of N-methyl-d-aspartate (NMDA) antagonist-induced (MK-801, ketamine) effects in electrophysiology and working memory models in rats. Preclinical pharmacokinetics revealed unbound brain/unbound plasma levels approaching unity and good oral bioavailability resulting in an average concentration at steady state (Cav,ss) predicted human dose of 30 mg once daily (q.d.). Modeling of a modified release formulation suggested that 25 mg twice daily (b.i.d.) could maintain plasma levels of 30 at or above targeted efficacious plasma levels for 24 h, which became part of the human clinical plan.


Alzheimers & Dementia | 2011

ORL1: A Novel Mechanism With Potential to Provide Beneficial Effects for Depressive Symptoms Associated With Alzheimer's Disease (AD)

Rathna Iyer; Allen J. Duplantier; Michael Aaron Brodney; Bradley Snyder; Elizabeth C. Arnold; Laura McDowell; Claire Leurent; Faith Prior; Panayiotis Zagouras; Robin Roof

Collaboration


Dive into the Laura McDowell's collaboration.

Researchain Logo
Decentralizing Knowledge