Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leigh B. Waddell is active.

Publication


Featured researches published by Leigh B. Waddell.


American Journal of Human Genetics | 2007

Mutations in Cardiac T-Box Factor Gene TBX20 Are Associated with Diverse Cardiac Pathologies, Including Defects of Septation and Valvulogenesis and Cardiomyopathy

Edwin P. Kirk; Margaret Sunde; Mauro W. Costa; Scott A. Rankin; Orit Wolstein; M. Leticia Castro; Tanya L. Butler; Changbaig Hyun; Guanglan Guo; Robyn Otway; Joel P. Mackay; Leigh B. Waddell; Andrew D. Cole; Christopher S. Hayward; Anne Keogh; P. Macdonald; Lyn R. Griffiths; Dianne Fatkin; Gary F. Sholler; Aaron M. Zorn; Michael P. Feneley; David S. Winlaw; Richard P. Harvey

The T-box family transcription factor gene TBX20 acts in a conserved regulatory network, guiding heart formation and patterning in diverse species. Mouse Tbx20 is expressed in cardiac progenitor cells, differentiating cardiomyocytes, and developing valvular tissue, and its deletion or RNA interference-mediated knockdown is catastrophic for heart development. TBX20 interacts physically, functionally, and genetically with other cardiac transcription factors, including NKX2-5, GATA4, and TBX5, mutations of which cause congenital heart disease (CHD). Here, we report nonsense (Q195X) and missense (I152M) germline mutations within the T-box DNA-binding domain of human TBX20 that were associated with a family history of CHD and a complex spectrum of developmental anomalies, including defects in septation, chamber growth, and valvulogenesis. Biophysical characterization of wild-type and mutant proteins indicated how the missense mutation disrupts the structure and function of the TBX20 T-box. Dilated cardiomyopathy was a feature of the TBX20 mutant phenotype in humans and mice, suggesting that mutations in developmental transcription factors can provide a sensitized template for adult-onset heart disease. Our findings are the first to link TBX20 mutations to human pathology. They provide insights into how mutation of different genes in an interactive regulatory circuit lead to diverse clinical phenotypes, with implications for diagnosis, genetic screening, and patient follow-up.


American Journal of Human Genetics | 2013

Mutations in GDP-Mannose Pyrophosphorylase B Cause Congenital and Limb-Girdle Muscular Dystrophies Associated with Hypoglycosylation of α-Dystroglycan

Keren J. Carss; Elizabeth Stevens; A. Reghan Foley; Sebahattin Cirak; Moniek Riemersma; Silvia Torelli; Alexander Hoischen; Tobias Willer; Monique van Scherpenzeel; Steven A. Moore; Sonia Messina; Enrico Bertini; Carsten G. Bönnemann; Jose E. Abdenur; Carla Grosmann; Akanchha Kesari; R. Quinlivan; Leigh B. Waddell; Helen Young; Elizabeth Wraige; Shu Yau; Lina Brodd; L. Feng; C. Sewry; Daniel G. MacArthur; Kathryn N. North; Eric P. Hoffman; Derek L. Stemple; Hans van Bokhoven; Kevin P. Campbell

Congenital muscular dystrophies with hypoglycosylation of α-dystroglycan (α-DG) are a heterogeneous group of disorders often associated with brain and eye defects in addition to muscular dystrophy. Causative variants in 14 genes thought to be involved in the glycosylation of α-DG have been identified thus far. Allelic mutations in these genes might also cause milder limb-girdle muscular dystrophy phenotypes. Using a combination of exome and Sanger sequencing in eight unrelated individuals, we present evidence that mutations in guanosine diphosphate mannose (GDP-mannose) pyrophosphorylase B (GMPPB) can result in muscular dystrophy variants with hypoglycosylated α-DG. GMPPB catalyzes the formation of GDP-mannose from GTP and mannose-1-phosphate. GDP-mannose is required for O-mannosylation of proteins, including α-DG, and it is the substrate of cytosolic mannosyltransferases. We found reduced α-DG glycosylation in the muscle biopsies of affected individuals and in available fibroblasts. Overexpression of wild-type GMPPB in fibroblasts from an affected individual partially restored glycosylation of α-DG. Whereas wild-type GMPPB localized to the cytoplasm, five of the identified missense mutations caused formation of aggregates in the cytoplasm or near membrane protrusions. Additionally, knockdown of the GMPPB ortholog in zebrafish caused structural muscle defects with decreased motility, eye abnormalities, and reduced glycosylation of α-DG. Together, these data indicate that GMPPB mutations are responsible for congenital and limb-girdle muscular dystrophies with hypoglycosylation of α-DG.


Human Mutation | 2010

Recessive mutations in RYR1 are a common cause of congenital fiber type disproportion

Nigel F. Clarke; Leigh B. Waddell; Sandra T. Cooper; Margaret Perry; Robert L. Smith; Andrew J. Kornberg; Francesco Muntoni; Suzanne Lillis; Volker Straub; Kate Bushby; M. Guglieri; Mary D. King; Michael Farrell; Isabelle Marty; Joël Lunardi; Nicole Monnier; Kathryn N. North

The main histological abnormality in congenital fiber type disproportion (CFTD) is hypotrophy of type 1 (slow twitch) fibers compared to type 2 (fast twitch) fibers. To investigate whether mutations in RYR1 are a cause of CFTD we sequenced RYR1 in seven CFTD families in whom the other known causes of CFTD had been excluded. We identified compound heterozygous changes in the RYR1 gene in four families (five patients), consistent with autosomal recessive inheritance. Three out of five patients had ophthalmoplegia, which may be the most specific clinical indication of mutations in RYR1. Type 1 fibers were at least 50% smaller, on average, than type 2 fibers in all biopsies. Recessive mutations in RYR1are a relatively common causeof CFTD and can be associated with extreme fiber size disproportion.


Journal of Clinical Investigation | 2014

Leiomodin-3 dysfunction results in thin filament disorganization and nemaline myopathy

Michaela Yuen; Sarah A. Sandaradura; James J. Dowling; Alla S. Kostyukova; Natalia Moroz; Kate G. R. Quinlan; Vilma-Lotta Lehtokari; Gianina Ravenscroft; Emily J. Todd; Ozge Ceyhan-Birsoy; David S. Gokhin; Jérome Maluenda; Monkol Lek; Flora Nolent; Christopher T. Pappas; Stefanie M. Novak; Adele D’Amico; Edoardo Malfatti; Brett Thomas; Stacey Gabriel; Namrata Gupta; Mark J. Daly; Biljana Ilkovski; Peter J. Houweling; Ann E. Davidson; Lindsay C. Swanson; Catherine A. Brownstein; Vandana Gupta; Livija Medne; Patrick Shannon

Nemaline myopathy (NM) is a genetic muscle disorder characterized by muscle dysfunction and electron-dense protein accumulations (nemaline bodies) in myofibers. Pathogenic mutations have been described in 9 genes to date, but the genetic basis remains unknown in many cases. Here, using an approach that combined whole-exome sequencing (WES) and Sanger sequencing, we identified homozygous or compound heterozygous variants in LMOD3 in 21 patients from 14 families with severe, usually lethal, NM. LMOD3 encodes leiomodin-3 (LMOD3), a 65-kDa protein expressed in skeletal and cardiac muscle. LMOD3 was expressed from early stages of muscle differentiation; localized to actin thin filaments, with enrichment near the pointed ends; and had strong actin filament-nucleating activity. Loss of LMOD3 in patient muscle resulted in shortening and disorganization of thin filaments. Knockdown of lmod3 in zebrafish replicated NM-associated functional and pathological phenotypes. Together, these findings indicate that mutations in the gene encoding LMOD3 underlie congenital myopathy and demonstrate that LMOD3 is essential for the organization of sarcomeric thin filaments in skeletal muscle.


Neurology | 2012

Eight new mutations and the expanding phenotype variability in muscular dystrophy caused by ANO5

Sini Penttilä; Johanna Palmio; Tiina Suominen; Olayinka Raheem; Anni Evilä; N. Muelas Gomez; Giorgio Tasca; Leigh B. Waddell; Nigel F. Clarke; A. Barboi; Peter Hackman; Bjarne Udd

Objective: Description of 8 new ANO5 mutations and significant expansion of the clinical phenotype spectrum associated with previously known and unknown mutations to improve diagnostic accuracy. Methods: DNA samples of 101 patients in 95 kindreds at our quaternary referral center in Finland, who had undetermined limb-girdle muscular dystrophy (LGMD), calf distal myopathy, or creatine kinase (CK) elevations of more than 2,000 IU/L, were selected for ANO5 genetic evaluation, and the clinical findings of patients with mutations were retrospectively analyzed. Results: A total of 25 patients with muscular dystrophy caused by 11 different recessive mutations in the ANO5 gene were identified. The vast majority of mutations, 8 of 11, proved to be previously unknown new mutations. The most frequent mutation, c.2272C>T (p.R758C), was present in 20 patients. The phenotypes associated with this and the common European mutation, c.191dupA, varied from nearly asymptomatic high hyperCKemia to severe LGMD with consistently milder phenotypes in female patients. Conclusions: Mutations in ANO5 are a frequent cause of undetermined muscular dystrophy, with both distal and proximal presentation. Other types include high hyperCKemia, myalgia, or calf hypertrophy over decades without significant weakness, especially in female patients. Mutations are distributed all over the gene, indicating that muscular dystrophy caused by ANO5 can be expected to occur in all populations.


Journal of Neuropathology and Experimental Neurology | 2011

Dysferlin, annexin A1, and mitsugumin 53 are upregulated in muscular dystrophy and localize to longitudinal tubules of the T-system with stretch.

Leigh B. Waddell; Frances A. Lemckert; Xi F. Zheng; Jenny Tran; Frances J. Evesson; J. Hawkes; Angela Lek; Neil Street; Peihui Lin; Nigel F. Clarke; Andrew P. Landstrom; Michael J. Ackerman; Noah Weisleder; Jianjie Ma; Kathryn N. North; Sandra T. Cooper

Mutations in dysferlin cause an inherited muscular dystrophy because of defective membrane repair. Three interacting partners of dysferlin are also implicated in membrane resealing: caveolin-3 (in limb girdle muscular dystrophy type 1C), annexin A1, and the newly identified protein mitsugumin 53 (MG53). Mitsugumin 53 accumulates at sites of membrane damage, and MG53-knockout mice display a progressive muscular dystrophy. This study explored the expression and localization of MG53 in human skeletal muscle, how membrane repair proteins are modulated in various forms of muscular dystrophy, and whether MG53 is a primary cause of human muscle disease. Mitsugumin 53 showed variable sarcolemmal and/or cytoplasmic immunolabeling in control human muscle and elevated levels in dystrophic patients. No pathogenic MG53 mutations were identified in 50 muscular dystrophy patients, suggesting that MG53 is unlikely to be a common cause of muscular dystrophy in Australia. Western blot analysis confirmed upregulation of MG53, as well as of dysferlin, annexin A1, and caveolin-3 to different degrees, in different muscular dystrophies. Importantly, MG53, annexin A1, and dysferlin localize to the t-tubule network and show enriched labeling at longitudinal tubules of the t-system in overstretch. Our results suggest that longitudinal tubules of the t-system may represent sites of physiological membrane damage targeted by this membrane repair complex.


Genetic Testing and Molecular Biomarkers | 2010

GATA4 mutations in 357 unrelated patients with congenital heart malformation.

Tanya L. Butler; Giorgia Esposito; Gillian M. Blue; Andrew D. Cole; Mauro W. Costa; Leigh B. Waddell; Gina Walizada; Gary F. Sholler; Edwin P. Kirk; Michael P. Feneley; Richard P. Harvey; David S. Winlaw

Congenital heart disease (CHD) represents one of the most common birth defects, but the genetic causes remain largely unknown. Mutations in GATA4, encoding a zinc finger transcription factor with a pivotal role in heart development, have been associated with CHD in several familial cases and a small subset of sporadic patients. To estimate the pathogenetic role of GATA4 in CHD, we screened for mutations in 357 unrelated patients with different congenital heart malformations. In addition to nine synonymous changes, we identified two known (A411V and D425N) and two novel putative mutations (G69D and P163R) in five patients with atrial or ventricular septal defects that were not seen in control subjects. The four mutations did not show altered GATA4 transcriptional activity in synergy with the transcription factors NKX2-5 and TBX20. Our data expand the spectrum of mutations associated with cardiac septal defects but do not support GATA4 mutations as a common cause of CHD.


Neurology | 2016

Mutations in HSPB8 causing a new phenotype of distal myopathy and motor neuropathy.

Roula Ghaoui; Johanna Palmio; Janice Brewer; Monkol Lek; Merrilee Needham; Anni Evilä; Peter Hackman; Per-Harald Jonson; Sini Penttilä; Anna Vihola; Sanna Huovinen; Mikaela Lindfors; Ryan L. Davis; Leigh B. Waddell; Simran Kaur; Con Yiannikas; Kathryn N. North; Nigel F. Clarke; Daniel G. MacArthur; Carolyn M. Sue; Bjarne Udd

Objective: To report novel disease and pathology due to HSPB8 mutations in 2 families with autosomal dominant distal neuromuscular disease showing both myofibrillar and rimmed vacuolar myopathy together with neurogenic changes. Methods: We performed whole-exome sequencing (WES) in tandem with linkage analysis and candidate gene approach as well as targeted next-generation sequencing (tNGS) to identify causative mutations in 2 families with dominant rimmed vacuolar myopathy and a motor neuropathy. Pathogenic variants and familial segregation were confirmed using Sanger sequencing. Results: WES and tNGS identified a heterozygous change in HSPB8 in both families: c.421A > G p.K141E in family 1 and c.151insC p.P173SfsX43 in family 2. Affected patients had a distal myopathy that showed myofibrillar aggregates and rimmed vacuoles combined with a clear neurogenic component both on biopsy and neurophysiologic studies. MRI of lower limb muscles demonstrated diffuse tissue changes early in the disease stage progressing later to fatty replacement typical of a myopathy. Conclusion: We expand the understanding of disease mechanisms, tissue involvement, and phenotypic outcome of HSPB8 mutations. HSPB8 is part of the chaperone-assisted selective autophagy (CASA) complex previously only associated with Charcot-Marie-Tooth type 2L (OMIM 60673) and distal hereditary motor neuronopathy type IIa. However, we now demonstrate that patients can develop a myopathy with histologic features of myofibrillar myopathy with aggregates and rimmed vacuoles, similar to the pathology in myopathies due to gene defects in other compounds of the CASA complex such as BAG3 and DNAJB6 after developing the early neurogenic effects.


Human Molecular Genetics | 2015

Mutations in PIGY: expanding the phenotype of inherited glycosylphosphatidylinositol deficiencies

Biljana Ilkovski; Alistair T. Pagnamenta; Gina L. O'Grady; Taroh Kinoshita; Malcolm F. Howard; Monkol Lek; Brett Thomas; Anne Turner; John Christodoulou; David Sillence; Samantha J. L. Knight; Niko Popitsch; David A. Keays; Consuelo Anzilotti; Anne Goriely; Leigh B. Waddell; Fabienne Brilot; Kathryn N. North; Noriyuki Kanzawa; Daniel G. MacArthur; Jenny C. Taylor; Usha Kini; Yoshiko Murakami; Nigel F. Clarke

Glycosylphosphatidylinositol (GPI)-anchored proteins are ubiquitously expressed in the human body and are important for various functions at the cell surface. Mutations in many GPI biosynthesis genes have been described to date in patients with multi-system disease and together these constitute a subtype of congenital disorders of glycosylation. We used whole exome sequencing in two families to investigate the genetic basis of disease and used RNA and cellular studies to investigate the functional consequences of sequence variants in the PIGY gene. Two families with different phenotypes had homozygous recessive sequence variants in the GPI biosynthesis gene PIGY. Two sisters with c.137T>C (p.Leu46Pro) PIGY variants had multi-system disease including dysmorphism, seizures, severe developmental delay, cataracts and early death. There were significantly reduced levels of GPI-anchored proteins (CD55 and CD59) on the surface of patient-derived skin fibroblasts (∼20–50% compared with controls). In a second, consanguineous family, two siblings had moderate development delay and microcephaly. A homozygous PIGY promoter variant (c.-540G>A) was detected within a 7.7 Mb region of autozygosity. This variant was predicted to disrupt a SP1 consensus binding site and was shown to be associated with reduced gene expression. Mutations in PIGY can occur in coding and non-coding regions of the gene and cause variable phenotypes. This article contributes to understanding of the range of disease phenotypes and disease genes associated with deficiencies of the GPI-anchor biosynthesis pathway and also serves to highlight the potential importance of analysing variants detected in 5′-UTR regions despite their typically low coverage in exome data.


Neuromuscular Disorders | 2013

A novel mutation expands the genetic and clinical spectrum of MYH7-related myopathies

Nigel F. Clarke; Kimberly Amburgey; James W. Teener; Sandra Camelo-Piragua; Akanchha Kesari; Leigh B. Waddell; Mark R. Davis; Nigel G. Laing; Nicole Monnier; Kathryn N. North; Eric P. Hoffman; James J. Dowling

MYH7 mutations are an established cause of Laing distal myopathy, myosin storage myopathy, and cardiomyopathy, as well as additional myopathy subtypes. We report a novel MYH7 mutation (p.Leu1597Arg) that arose de novo in two unrelated probands. Proband 1 has a myopathy characterized by distal weakness and prominent contractures and histopathology typical of multi-minicore disease. Proband 2 has an axial myopathy and histopathology consistent with congenital fiber type disproportion. These cases highlight the broad spectrum of clinical and histological patterns associated with MYH7 mutations, and provide further evidence that MYH7 is likely responsible for a greater proportion of congenital myopathies than currently appreciated.

Collaboration


Dive into the Leigh B. Waddell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simranpreet Kaur

Children's Hospital at Westmead

View shared research outputs
Top Co-Authors

Avatar

Frances J. Evesson

Children's Hospital at Westmead

View shared research outputs
Top Co-Authors

Avatar

Kristi J. Jones

Children's Hospital at Westmead

View shared research outputs
Top Co-Authors

Avatar

Sarah A. Sandaradura

Children's Hospital at Westmead

View shared research outputs
Researchain Logo
Decentralizing Knowledge