Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisa C. Simonsen is active.

Publication


Featured researches published by Lisa C. Simonsen.


Radiation Measurements | 1999

Shielding from solar particle event exposures in deep space

John W. Wilson; F. A. Cucinotta; Judy L. Shinn; Lisa C. Simonsen; Rajendra R. Dubey; W.R Jordan; T. D. Jones; C. K. Chang; Myung-Hee Y. Kim

The physical composition and intensities of solar particle event exposures of sensitive astronaut tissues are examined under conditions approximating an astronaut in deep space. Response functions for conversion of particle fluence into dose and dose equivalent averaged over organ tissues are used to establish significant fluence levels and the expected dose and dose rates of the most important events from past observations. The BRYNTRN transport code is used to evaluate the local environment experienced by sensitive tissues and used to evaluate bioresponse models developed for use in tactical nuclear warfare. The present results will help to clarify the biophysical aspects of such exposure in the assessment of RBE and dose rate effects and their impact on design of protection systems for the astronauts. The use of polymers as shielding material in place of an equal mass of aluminum would provide a large safety factor without increasing the vehicle mass. This safety factor is sufficient to provide adequate protection if a factor of two larger event than has ever been observed in fact occurs during the mission.


Radiation Research | 1993

Temporal analysis of the October 1989 proton flare using computerized anatomical models

Lisa C. Simonsen; Francis A. Cucinotta; William Atwell; John E. Nealy

The GOES-7 time history data of hourly averaged integral proton fluxes at various particle kinetic energies are analyzed for the solar proton event that occurred between October 19 and 29, 1989. By analyzing the time history data, the dose rates which may vary over many orders of magnitude in the early phases of the flare can be estimated as well as the cumulative dose as a function of time. Basic transport calculations are coupled with detailed body organ thickness distributions from computerized anatomical models to estimate dose rates and cumulative doses to 20 critical body organs. For a 5-cm-thick water shield, cumulative skin, eye, and blood-forming-organ dose equivalents of 1.27, 1.23, and 0.41 Sv, respectively, are estimated. These results are approximately 40-50% less than the widely used 0- and 5-cm slab dose estimates. The risk of cancer incidence and mortality are also estimated for astronauts protected by various water shield thicknesses.


Journal of Spacecraft and Rockets | 1990

Space radiation dose estimates on the surface of Mars

Lisa C. Simonsen; John E. Nealy; Lawrence W. Townsend; John Wilson

A future goal of the U.S. space program is a commitment to the manned exploration and habitation of Mars. An important consideration of such missions is the exposure of crew members to the damaging effects of ionizing radiation from high-energy galactic cosmic ray fluxes and solar proton flares. The crew will encounter the most harmful radiation environment in transit to Mars from which they must be adequately protected. However, once on the planets surface, the Martian environment should provide a significant amount of protection from free-space radiative fluxes. In current Mars scenario descriptions, the crew flight time to Mars is estimated to be anywhere from 7 months to over a year each way, with stay times on the surface ranging from 20 days to 2 years. To maintain dose levels below established astronaut limits, dose estimates need to be determined for the entire mission length. With extended crew durations on the surface anticipated, the characterization of the Mars radiation environment is important in assessing all radiation protection requirements. This synopsis focuses on the probable doses incurred by surface inhabitants from the transport of galactic cosmic rays and solar protons through the Mars atmosphere.


Health Physics | 1995

Variations in astronaut radiation exposure due to anisotropic shield distribution

John Wilson; John E. Nealy; James S. Wood; Garry D. Qualls; William Atwell; Judy L. Shinn; Lisa C. Simonsen

The dose incurred in an environment generated by extraterrestrial space radiations within an anisotropic shield distribution depends on the orientation of the astronauts body relative to the shield geometry. The fluctuations in exposure of specific organ sites due to astronaut re-orientation are found to be a factor of 2 or more in a typical space habitation module and typical space radiations. An approximation function is found that overestimates astronaut exposure in most cases studied and is recommended as a shield design guide for future deep space missions.


Life sciences in space research | 2016

Galactic cosmic ray simulation at the NASA Space Radiation Laboratory

John W. Norbury; Walter Schimmerling; Tony C. Slaba; Edouard I. Azzam; Francis F. Badavi; G. Baiocco; E.R. Benton; Veronica Bindi; Eleanor A. Blakely; Steve R. Blattnig; David A. Boothman; Thomas B. Borak; Richard A. Britten; Stan Curtis; Michael Dingfelder; Marco Durante; William S. Dynan; Amelia J. Eisch; S. Robin Elgart; Dudley T. Goodhead; Peter Guida; L. Heilbronn; Christine E. Hellweg; Janice L. Huff; Amy Kronenberg; Chiara La Tessa; Derek I. Lowenstein; J. Miller; Takashi Morita; L. Narici

Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation.


international conference on evolvable systems | 1990

Space radiation shielding for a martian habitat

Lisa C. Simonsen; John E. Nealy; Lawrence W. Townsend; John Wilson

Radiation shielding analyses are performed for a candidate Mars base habitat. The Langley cosmic ray transport code and the Langley nucleon transport code are used to quantify the transport and attenuation of galactic cosmic rays and solar flare protons through both the Martian atmosphere and regolith shielding. Doses at the surface and at various altitudes were calculated in a previous study using both a high-density and a low-density Mars atmosphere model. This study extends the previous low-density results to include the further transport of the ionizing radiation that reaches the surface through additional shielding provided by Martian regolith. A four-compound regolith model, which includes SiO2, Fe2O3, MgO, and CaO, was selected based on the chemistry of the Viking 1 Lander site. The spectral fluxes of heavy charged particles and the corresponding dosimetric quantities are computed for a series of thicknesses in the shield media after traversing the atmosphere. These data are then used as input to algorithms for a specific shield geometry. The results are presented as the maximum dose received in the center of the habitat versus various shield thicknesses for a base at an altitude of 0 km and 8 km.


international conference on evolvable systems | 2002

Shield Optimization in Simple Geometry for the Gateway Concept

Ram K. Tripathi; Lisa C. Simonsen; John E. Nealy; Patrick A. Troutman; John Wilson

The great cost of added radiation shielding is a potential limiting factor in many deep space missions. For this enabling technology, we are developing tools for optimized shield design over multi-segmented missions involving multiple work and living areas in the transport and duty phase of various space missions. The total shield mass over all pieces of equipment and habitats is optimized subject to career dose and dose rate constraints. Preliminary studies of deep space missions indicate that for long duration space missions, improved shield materials will be required. The details of this new method and its impact on space missions and other technologies will be discussed. This study will provide a vital tool for evaluating Gateway designs in their usage context. Providing protection against the hazards of space radiation is one of the challenges to the Gateway infrastructure designs. We will use the mission optimization software to scope the impact of Gateway operations on human exposures and the effectiveness of alternate shielding materials on Gateway infrastructure designs. This study will provide a guide to the effectiveness of multifunctional materials in preparation to more detailed geometry studies in progress.


Materials & Design | 2001

Approach and Issues Relating to Shield Material Design to Protect Astronauts from Space Radiation

John Wilson; F.A. Cucinotta; J. Miller; Judy L. Shinn; Sheila A. Thibeault; Robert C. Singleterry; Lisa C. Simonsen; M.H. Kim

One major obstacle to human space exploration is the possible limitations imposed by the adverse effects of long-term exposure to the space environment. Even before human spaceflight began, the potentially brief exposure of astronauts to the very intense random solar energetic particle (SEP) events was of great concern. A new challenge appears in deep space exploration from exposure to the low-intensity heavy-ion flux of the galactic cosmic rays (GCR) since the missions are of long duration and the accumulated exposures can be high. Since aluminum (traditionally used in spacecraft to avoid potential radiation risks) leads to prohibitively expensive mission launch costs, alternative materials need to be explored. An overview of the materials related issues and their impact on human space exploration will be given.


international conference on evolvable systems | 1990

Radiation Protection Effectiveness of a Proposed Magnetic Shielding Concept for Manned Mars Missions

Lawrence W. Townsend; John Wilson; Judy L. Shinn; John E. Nealy; Lisa C. Simonsen

The effectiveness of a proposed concept for shielding a manned Mars vehicle using a confined magnetic field configuration is evaluated by computing estimated crew radiation exposures resulting from galactic cosmic rays and a large solar flare event. In the study the incident radiation spectra are transported through the spacecraft structure/magnetic shield using the deterministic space radiation transport computer codes developed at Langley Research Center. The calculated exposures unequivocally demonstrate that magnetic shielding could provide an effective barrier against solar flare protons but is virtually transparent to the more energetic galactic cosmic rays. It is then demonstrated that through proper selection of materials and shield configuration, adequate and reliable bulk material shielding can be provided for the same total mass as needed to generate and support the more risky magnetic field configuration.


Journal of Spacecraft and Rockets | 1991

Martian regolith as space radiation shielding

Lisa C. Simonsen; John E. Nealy; Lawrence W. Townsend; John Wilson

In current Mars scenario descriptions, an entire mission is estimated to take 500-1000 days round trip with a 100-600 day stay time on the surface. To maintain radiation dose levels below permissible limits, dose estimates must be determined for the entire mission length. With extended crew durations anticipated on Mars, the characterization of the radiation environment on the surface becomes a critical aspect of mission planning. The most harmful free-space radiation is due to high energy galactic cosmic rays (GCR) and solar flare protons. The carbon dioxide atmosphere of Mars has been estimated to provide a sufficient amount of shielding from these radiative fluxes to help maintain incurred doses below permissible limits. However, Mars exploration crews are likely to incur a substantial dose while in transit to Mars that will reduce the allowable dose that can be received while on the surface. Therefore, additional shielding may be necessary to maintain short-term dose levels below limits or to help maintain career dose levels as low as possible. By utilizing local resources, such as Martian regolith, shielding materials can be provided without excessive launch weight requirements from Earth. The scope of this synopsis and of Ref. 3 focuses on presenting our estimates of surface radiation doses received due to the transport and attenuation of galactic cosmic rays and February 1956 solar flare protons through the Martian atmosphere and through additional shielding provided by Martian regolith.

Collaboration


Dive into the Lisa C. Simonsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Wilson

Langley Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janice L. Huff

Universities Space Research Association

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge