Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mehdi Mesri is active.

Publication


Featured researches published by Mehdi Mesri.


Nature Biotechnology | 2009

Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma.

Terri Addona; Susan E. Abbatiello; Birgit Schilling; Steven J. Skates; D. R. Mani; David M. Bunk; Clifford H. Spiegelman; Lisa J. Zimmerman; Amy-Joan L. Ham; Hasmik Keshishian; Steven C. Hall; Simon Allen; Ronald K. Blackman; Christoph H. Borchers; Charles Buck; Michael P. Cusack; Nathan G. Dodder; Bradford W. Gibson; Jason M. Held; Tara Hiltke; Angela M. Jackson; Eric B. Johansen; Christopher R. Kinsinger; Jing Li; Mehdi Mesri; Thomas A. Neubert; Richard K. Niles; Trenton Pulsipher; David F. Ransohoff; Henry Rodriguez

Verification of candidate biomarkers relies upon specific, quantitative assays optimized for selective detection of target proteins, and is increasingly viewed as a critical step in the discovery pipeline that bridges unbiased biomarker discovery to preclinical validation. Although individual laboratories have demonstrated that multiple reaction monitoring (MRM) coupled with isotope dilution mass spectrometry can quantify candidate protein biomarkers in plasma, reproducibility and transferability of these assays between laboratories have not been demonstrated. We describe a multilaboratory study to assess reproducibility, recovery, linear dynamic range and limits of detection and quantification of multiplexed, MRM-based assays, conducted by NCI-CPTAC. Using common materials and standardized protocols, we demonstrate that these assays can be highly reproducible within and across laboratories and instrument platforms, and are sensitive to low μg/ml protein concentrations in unfractionated plasma. We provide data and benchmarks against which individual laboratories can compare their performance and evaluate new technologies for biomarker verification in plasma.


Nature | 2014

Proteogenomic characterization of human colon and rectal cancer

Bing Zhang; Jing Wang; Xiaojing Wang; Jing Zhu; Qi Liu; Zhiao Shi; Matthew C. Chambers; Lisa J. Zimmerman; Kent Shaddox; Sangtae Kim; Sherri R. Davies; Sean Wang; Pei Wang; Christopher R. Kinsinger; Robert Rivers; Henry Rodriguez; R. Reid Townsend; Matthew J. Ellis; Steven A. Carr; David L. Tabb; Robert J. Coffey; Robbert J. C. Slebos; Daniel C. Liebler; Michael A. Gillette; Karl R. Klauser; Eric Kuhn; D. R. Mani; Philipp Mertins; Karen A. Ketchum; Amanda G. Paulovich

Extensive genomic characterization of human cancers presents the problem of inference from genomic abnormalities to cancer phenotypes. To address this problem, we analysed proteomes of colon and rectal tumours characterized previously by The Cancer Genome Atlas (TCGA) and perform integrated proteogenomic analyses. Somatic variants displayed reduced protein abundance compared to germline variants. Messenger RNA transcript abundance did not reliably predict protein abundance differences between tumours. Proteomics identified five proteomic subtypes in the TCGA cohort, two of which overlapped with the TCGA ‘microsatellite instability/CpG island methylation phenotype’ transcriptomic subtype, but had distinct mutation, methylation and protein expression patterns associated with different clinical outcomes. Although copy number alterations showed strong cis- and trans-effects on mRNA abundance, relatively few of these extend to the protein level. Thus, proteomics data enabled prioritization of candidate driver genes. The chromosome 20q amplicon was associated with the largest global changes at both mRNA and protein levels; proteomics data highlighted potential 20q candidates, including HNF4A (hepatocyte nuclear factor 4, alpha), TOMM34 (translocase of outer mitochondrial membrane 34) and SRC (SRC proto-oncogene, non-receptor tyrosine kinase). Integrated proteogenomic analysis provides functional context to interpret genomic abnormalities and affords a new paradigm for understanding cancer biology.


Journal of Proteome Research | 2010

Repeatability and Reproducibility in Proteomic Identifications by Liquid Chromatography−Tandem Mass Spectrometry

David L. Tabb; Lorenzo Vega-Montoto; Paul A. Rudnick; Asokan Mulayath Variyath; Amy-Joan L. Ham; David M. Bunk; Lisa E. Kilpatrick; Dean Billheimer; Ronald K. Blackman; Steven A. Carr; Karl R. Clauser; Jacob D. Jaffe; Kevin A. Kowalski; Thomas A. Neubert; Fred E. Regnier; Birgit Schilling; Tony Tegeler; Mu Wang; Pei Wang; Jeffrey R. Whiteaker; Lisa J. Zimmerman; Susan J. Fisher; Bradford W. Gibson; Christopher R. Kinsinger; Mehdi Mesri; Henry Rodriguez; Stephen E. Stein; Paul Tempst; Amanda G. Paulovich; Daniel C. Liebler

The complexity of proteomic instrumentation for LC-MS/MS introduces many possible sources of variability. Data-dependent sampling of peptides constitutes a stochastic element at the heart of discovery proteomics. Although this variation impacts the identification of peptides, proteomic identifications are far from completely random. In this study, we analyzed interlaboratory data sets from the NCI Clinical Proteomic Technology Assessment for Cancer to examine repeatability and reproducibility in peptide and protein identifications. Included data spanned 144 LC-MS/MS experiments on four Thermo LTQ and four Orbitrap instruments. Samples included yeast lysate, the NCI-20 defined dynamic range protein mix, and the Sigma UPS 1 defined equimolar protein mix. Some of our findings reinforced conventional wisdom, such as repeatability and reproducibility being higher for proteins than for peptides. Most lessons from the data, however, were more subtle. Orbitraps proved capable of higher repeatability and reproducibility, but aberrant performance occasionally erased these gains. Even the simplest protein digestions yielded more peptide ions than LC-MS/MS could identify during a single experiment. We observed that peptide lists from pairs of technical replicates overlapped by 35-60%, giving a range for peptide-level repeatability in these experiments. Sample complexity did not appear to affect peptide identification repeatability, even as numbers of identified spectra changed by an order of magnitude. Statistical analysis of protein spectral counts revealed greater stability across technical replicates for Orbitraps, making them superior to LTQ instruments for biomarker candidate discovery. The most repeatable peptides were those corresponding to conventional tryptic cleavage sites, those that produced intense MS signals, and those that resulted from proteins generating many distinct peptides. Reproducibility among different instruments of the same type lagged behind repeatability of technical replicates on a single instrument by several percent. These findings reinforce the importance of evaluating repeatability as a fundamental characteristic of analytical technologies.


Nature | 2016

Proteogenomics connects somatic mutations to signalling in breast cancer

Philipp Mertins; D. R. Mani; Kelly V. Ruggles; Michael A. Gillette; Karl R. Clauser; Pei Wang; Xianlong Wang; Jana W. Qiao; Song Cao; Francesca Petralia; Emily Kawaler; Filip Mundt; Karsten Krug; Zhidong Tu; Jonathan T. Lei; Michael L. Gatza; Matthew D. Wilkerson; Charles M. Perou; Venkata Yellapantula; Kuan Lin Huang; Chenwei Lin; Michael D. McLellan; Ping Yan; Sherri R. Davies; R. Reid Townsend; Steven J. Skates; Jing Wang; Bing Zhang; Christopher R. Kinsinger; Mehdi Mesri

Summary Somatic mutations have been extensively characterized in breast cancer, but the effects of these genetic alterations on the proteomic landscape remain poorly understood. We describe quantitative mass spectrometry-based proteomic and phosphoproteomic analyses of 105 genomically annotated breast cancers of which 77 provided high-quality data. Integrated analyses allowed insights into the somatic cancer genome including the consequences of chromosomal loss, such as the 5q deletion characteristic of basal-like breast cancer. The 5q trans effects were interrogated against the Library of Integrated Network-based Cellular Signatures, thereby connecting CETN3 and SKP1 loss to elevated expression of EGFR, and SKP1 loss also to increased SRC. Global proteomic data confirmed a stromal-enriched group in addition to basal and luminal clusters and pathway analysis of the phosphoproteome identified a G Protein-coupled receptor cluster that was not readily identified at the mRNA level. Besides ERBB2, other amplicon-associated, highly phosphorylated kinases were identified, including CDK12, PAK1, PTK2, RIPK2 and TLK2. We demonstrate that proteogenomic analysis of breast cancer elucidates functional consequences of somatic mutations, narrows candidate nominations for driver genes within large deletions and amplified regions, and identifies therapeutic targets.


Cell | 2016

Integrated proteogenomic characterization of human high-grade serous ovarian cancer

Hui Zhang; Tao Liu; Zhen Zhang; Samuel H. Payne; Bai Zhang; Jason E. McDermott; Jian-Ying Zhou; Vladislav A. Petyuk; Li Chen; Debjit Ray; Shisheng Sun; Feng Yang; Lijun Chen; Jing Wang; Punit Shah; Seong Won Cha; Paul Aiyetan; Sunghee Woo; Yuan Tian; Marina A. Gritsenko; Therese R. Clauss; Caitlin H. Choi; Matthew E. Monroe; Stefani N. Thomas; Song Nie; Chaochao Wu; Ronald J. Moore; Kun-Hsing Yu; David L. Tabb; David Fenyö

To provide a detailed analysis of the molecular components and underlying mechanisms associated with ovarian cancer, we performed a comprehensive mass-spectrometry-based proteomic characterization of 174 ovarian tumors previously analyzed by The Cancer Genome Atlas (TCGA), of which 169 were high-grade serous carcinomas (HGSCs). Integrating our proteomic measurements with the genomic data yielded a number of insights into disease, such as how different copy-number alternations influence the proteome, the proteins associated with chromosomal instability, the sets of signaling pathways that diverse genome rearrangements converge on, and the ones most associated with short overall survival. Specific protein acetylations associated with homologous recombination deficiency suggest a potential means for stratifying patients for therapy. In addition to providing a valuable resource, these findings provide a view of how the somatic genome drives the cancer proteome and associations between protein and post-translational modification levels and clinical outcomes in HGSC. VIDEO ABSTRACT.


Molecular & Cellular Proteomics | 2010

Performance Metrics for Liquid Chromatography-Tandem Mass Spectrometry Systems in Proteomics Analyses

Paul A. Rudnick; Karl R. Clauser; Lisa E. Kilpatrick; Dmitrii V. Tchekhovskoi; P. Neta; Nikša Blonder; Dean Billheimer; Ronald K. Blackman; David M. Bunk; Amy-Joan L. Ham; Jacob D. Jaffe; Christopher R. Kinsinger; Mehdi Mesri; Thomas A. Neubert; Birgit Schilling; David L. Tabb; Tony Tegeler; Lorenzo Vega-Montoto; Asokan Mulayath Variyath; Mu Wang; Pei Wang; Jeffrey R. Whiteaker; Lisa J. Zimmerman; Steven A. Carr; Susan J. Fisher; Bradford W. Gibson; Amanda G. Paulovich; Fred E. Regnier; Henry Rodriguez; Cliff Spiegelman

A major unmet need in LC-MS/MS-based proteomics analyses is a set of tools for quantitative assessment of system performance and evaluation of technical variability. Here we describe 46 system performance metrics for monitoring chromatographic performance, electrospray source stability, MS1 and MS2 signals, dynamic sampling of ions for MS/MS, and peptide identification. Applied to data sets from replicate LC-MS/MS analyses, these metrics displayed consistent, reasonable responses to controlled perturbations. The metrics typically displayed variations less than 10% and thus can reveal even subtle differences in performance of system components. Analyses of data from interlaboratory studies conducted under a common standard operating procedure identified outlier data and provided clues to specific causes. Moreover, interlaboratory variation reflected by the metrics indicates which system components vary the most between laboratories. Application of these metrics enables rational, quantitative quality assessment for proteomics and other LC-MS/MS analytical applications.


Molecular & Cellular Proteomics | 2010

Interlaboratory Study Characterizing a Yeast Performance Standard for Benchmarking LC-MS Platform Performance

Amanda G. Paulovich; Dean Billheimer; Amy-Joan L. Ham; Lorenzo Vega-Montoto; Paul A. Rudnick; David L. Tabb; Pei Wang; Ronald K. Blackman; David M. Bunk; Karl R. Clauser; Christopher R. Kinsinger; Birgit Schilling; Tony Tegeler; Asokan Mulayath Variyath; Mu Wang; Jeffrey R. Whiteaker; Lisa J. Zimmerman; David Fenyö; Steven A. Carr; Susan J. Fisher; Bradford W. Gibson; Mehdi Mesri; Thomas A. Neubert; Fred E. Regnier; Henry Rodriguez; Cliff Spiegelman; Stephen E. Stein; Paul Tempst; Daniel C. Liebler

Optimal performance of LC-MS/MS platforms is critical to generating high quality proteomics data. Although individual laboratories have developed quality control samples, there is no widely available performance standard of biological complexity (and associated reference data sets) for benchmarking of platform performance for analysis of complex biological proteomes across different laboratories in the community. Individual preparations of the yeast Saccharomyces cerevisiae proteome have been used extensively by laboratories in the proteomics community to characterize LC-MS platform performance. The yeast proteome is uniquely attractive as a performance standard because it is the most extensively characterized complex biological proteome and the only one associated with several large scale studies estimating the abundance of all detectable proteins. In this study, we describe a standard operating protocol for large scale production of the yeast performance standard and offer aliquots to the community through the National Institute of Standards and Technology where the yeast proteome is under development as a certified reference material to meet the long term needs of the community. Using a series of metrics that characterize LC-MS performance, we provide a reference data set demonstrating typical performance of commonly used ion trap instrument platforms in expert laboratories; the results provide a basis for laboratories to benchmark their own performance, to improve upon current methods, and to evaluate new technologies. Additionally, we demonstrate how the yeast reference, spiked with human proteins, can be used to benchmark the power of proteomics platforms for detection of differentially expressed proteins at different levels of concentration in a complex matrix, thereby providing a metric to evaluate and minimize preanalytical and analytical variation in comparative proteomics experiments.


Molecular & Cellular Proteomics | 2008

Use of an Immunoaffinity-Mass Spectrometry-based Approach for the Quantification of Protein Biomarkers from Serum Samples of Lung Cancer Patients

Gordon R. Nicol; Mark Han; Jun Kim; Charles E. Birse; Erin Brand; Anh Nguyen; Mehdi Mesri; William FitzHugh; Patrick Kaminker; Paul A. Moore; Steven M. Ruben; Tao He

It is a challenging task to verify and quantify potential biomarkers expressed at elevated levels in sera from cancer patients. An immunoaffinity-mass spectrometry-based approach has been developed using antibodies to enrich proteins of interest from sera followed by mass spectrometry-based quantification. Antibodies specific to the protein of interest were immobilized to hydrazide resin via the carbohydrate moiety on the Fc region of the antibody. Captured proteins were eluted, reduced, alkylated, and digested with trypsin. Peptides were analyzed by LC coupled with multiple reaction monitoring approach, and quantification was achieved by the addition of stable isotope-labeled (heavy) standard peptides. Using this methodology, we were able to achieve a linear response from 15 to 250 ng/ml for carcinoembryonic antigen (CEA), a known tumor biomarker. Moreover we observed elevated levels of CEA in sera samples from lung cancer patients that to our knowledge is the first time that circulating CEA has been detected by mass spectrometry-based analysis. This approach was further applied to potential protein biomarkers discovered from tumor cell lines and tumor tissues. A linear response was obtained from a multiplex spiking experiment in normal human sera for secretory leukocyte peptidase inhibitor (4–500 ng/ml), tissue factor pathway inhibitor (TFPI) (42–1000 ng/ml), tissue factor pathway inhibitor 2 (TFPI2) (2–250 ng/ml), and metalloproteinase inhibitor 1 (TIMP1) (430–1000 ng/ml). A replicate experiment for a single concentration value yielded a relative coefficient of variation better than 11% for TFPI, secretory leukocyte peptidase inhibitor, and TFPI2. The expression level of the proteins in lung cancer patient sera was assayed by an immunoaffinity-multiple reaction monitoring method, and the results were comparable with those obtained from ELISA. This immunoaffinity-mass spectrometry-based quantification approach thus provides a specific and accurate assay for verifying the expression of potential biomarkers in patient serum samples especially for those proteins for which the necessary reagents for ELISA development are unavailable.


Molecular & Cellular Proteomics | 2015

Large-Scale Interlaboratory Study to Develop, Analytically Validate and Apply Highly Multiplexed, Quantitative Peptide Assays to Measure Cancer-Relevant Proteins in Plasma

Susan E. Abbatiello; Birgit Schilling; D. R. Mani; Lisa J. Zimmerman; Steven C. Hall; Brendan MacLean; Matthew E. Albertolle; Simon Allen; Michael Burgess; Michael P. Cusack; Mousumi Gosh; Victoria Hedrick; Jason M. Held; H. Dorota Inerowicz; Angela M. Jackson; Hasmik Keshishian; Christopher R. Kinsinger; John S. Lyssand; Lee Makowski; Mehdi Mesri; Henry Rodriguez; Paul A. Rudnick; Pawel Sadowski; Nell Sedransk; Kent Shaddox; Stephen J. Skates; Eric Kuhn; Derek Smith; Jeffery R. Whiteaker; Corbin A. Whitwell

There is an increasing need in biology and clinical medicine to robustly and reliably measure tens to hundreds of peptides and proteins in clinical and biological samples with high sensitivity, specificity, reproducibility, and repeatability. Previously, we demonstrated that LC-MRM-MS with isotope dilution has suitable performance for quantitative measurements of small numbers of relatively abundant proteins in human plasma and that the resulting assays can be transferred across laboratories while maintaining high reproducibility and quantitative precision. Here, we significantly extend that earlier work, demonstrating that 11 laboratories using 14 LC-MS systems can develop, determine analytical figures of merit, and apply highly multiplexed MRM-MS assays targeting 125 peptides derived from 27 cancer-relevant proteins and seven control proteins to precisely and reproducibly measure the analytes in human plasma. To ensure consistent generation of high quality data, we incorporated a system suitability protocol (SSP) into our experimental design. The SSP enabled real-time monitoring of LC-MRM-MS performance during assay development and implementation, facilitating early detection and correction of chromatographic and instrumental problems. Low to subnanogram/ml sensitivity for proteins in plasma was achieved by one-step immunoaffinity depletion of 14 abundant plasma proteins prior to analysis. Median intra- and interlaboratory reproducibility was <20%, sufficient for most biological studies and candidate protein biomarker verification. Digestion recovery of peptides was assessed and quantitative accuracy improved using heavy-isotope-labeled versions of the proteins as internal standards. Using the highly multiplexed assay, participating laboratories were able to precisely and reproducibly determine the levels of a series of analytes in blinded samples used to simulate an interlaboratory clinical study of patient samples. Our study further establishes that LC-MRM-MS using stable isotope dilution, with appropriate attention to analytical validation and appropriate quality control measures, enables sensitive, specific, reproducible, and quantitative measurements of proteins and peptides in complex biological matrices such as plasma.


Cancer Discovery | 2013

Connecting Genomic Alterations to Cancer Biology with Proteomics: The NCI Clinical Proteomic Tumor Analysis Consortium

Matthew J. Ellis; Michael A. Gillette; Steven A. Carr; Amanda G. Paulovich; Richard D. Smith; Karin K. Rodland; R. Reid Townsend; Christopher R. Kinsinger; Mehdi Mesri; Henry Rodriguez; Daniel C. Liebler

The National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium is applying the latest generation of proteomic technologies to genomically annotated tumors from The Cancer Genome Atlas (TCGA) program, a joint initiative of the NCI and the National Human Genome Research Institute. By providing a fully integrated accounting of DNA, RNA, and protein abnormalities in individual tumors, these datasets will illuminate the complex relationship between genomic abnormalities and cancer phenotypes, thus producing biologic insights as well as a wave of novel candidate biomarkers and therapeutic targets amenable to verification using targeted mass spectrometry methods.

Collaboration


Dive into the Mehdi Mesri's collaboration.

Top Co-Authors

Avatar

Henry Rodriguez

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tara Hiltke

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emily S. Boja

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

D. R. Mani

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Rivers

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Birgit Schilling

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge