D. R. Mani
Broad Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D. R. Mani.
Nature Biotechnology | 2009
Terri Addona; Susan E. Abbatiello; Birgit Schilling; Steven J. Skates; D. R. Mani; David M. Bunk; Clifford H. Spiegelman; Lisa J. Zimmerman; Amy-Joan L. Ham; Hasmik Keshishian; Steven C. Hall; Simon Allen; Ronald K. Blackman; Christoph H. Borchers; Charles Buck; Michael P. Cusack; Nathan G. Dodder; Bradford W. Gibson; Jason M. Held; Tara Hiltke; Angela M. Jackson; Eric B. Johansen; Christopher R. Kinsinger; Jing Li; Mehdi Mesri; Thomas A. Neubert; Richard K. Niles; Trenton Pulsipher; David F. Ransohoff; Henry Rodriguez
Verification of candidate biomarkers relies upon specific, quantitative assays optimized for selective detection of target proteins, and is increasingly viewed as a critical step in the discovery pipeline that bridges unbiased biomarker discovery to preclinical validation. Although individual laboratories have demonstrated that multiple reaction monitoring (MRM) coupled with isotope dilution mass spectrometry can quantify candidate protein biomarkers in plasma, reproducibility and transferability of these assays between laboratories have not been demonstrated. We describe a multilaboratory study to assess reproducibility, recovery, linear dynamic range and limits of detection and quantification of multiplexed, MRM-based assays, conducted by NCI-CPTAC. Using common materials and standardized protocols, we demonstrate that these assays can be highly reproducible within and across laboratories and instrument platforms, and are sensitive to low μg/ml protein concentrations in unfractionated plasma. We provide data and benchmarks against which individual laboratories can compare their performance and evaluate new technologies for biomarker verification in plasma.
Journal of Proteome Research | 2008
Lukas N. Mueller; Mi-Youn Brusniak; D. R. Mani; Ruedi Aebersold
Over the past decade, a series of experimental strategies for mass spectrometry based quantitative proteomics and corresponding computational methodology for the processing of the resulting data have been generated. We provide here an overview of the main quantification principles and available software solutions for the analysis of data generated by liquid chromatography coupled to mass spectrometry (LC-MS). Three conceptually different methods to perform quantitative LC-MS experiments have been introduced. In the first, quantification is achieved by spectral counting, in the second via differential stable isotopic labeling, and in the third by using the ion current in label-free LC-MS measurements. We discuss here advantages and challenges of each quantification approach and assess available software solutions with respect to their instrument compatibility and processing functionality. This review therefore serves as a starting point for researchers to choose an appropriate software solution for quantitative proteomic experiments based on their experimental and analytical requirements.
Nature | 2016
Philipp Mertins; D. R. Mani; Kelly V. Ruggles; Michael A. Gillette; Karl R. Clauser; Pei Wang; Xianlong Wang; Jana W. Qiao; Song Cao; Francesca Petralia; Emily Kawaler; Filip Mundt; Karsten Krug; Zhidong Tu; Jonathan T. Lei; Michael L. Gatza; Matthew D. Wilkerson; Charles M. Perou; Venkata Yellapantula; Kuan Lin Huang; Chenwei Lin; Michael D. McLellan; Ping Yan; Sherri R. Davies; R. Reid Townsend; Steven J. Skates; Jing Wang; Bing Zhang; Christopher R. Kinsinger; Mehdi Mesri
Summary Somatic mutations have been extensively characterized in breast cancer, but the effects of these genetic alterations on the proteomic landscape remain poorly understood. We describe quantitative mass spectrometry-based proteomic and phosphoproteomic analyses of 105 genomically annotated breast cancers of which 77 provided high-quality data. Integrated analyses allowed insights into the somatic cancer genome including the consequences of chromosomal loss, such as the 5q deletion characteristic of basal-like breast cancer. The 5q trans effects were interrogated against the Library of Integrated Network-based Cellular Signatures, thereby connecting CETN3 and SKP1 loss to elevated expression of EGFR, and SKP1 loss also to increased SRC. Global proteomic data confirmed a stromal-enriched group in addition to basal and luminal clusters and pathway analysis of the phosphoproteome identified a G Protein-coupled receptor cluster that was not readily identified at the mRNA level. Besides ERBB2, other amplicon-associated, highly phosphorylated kinases were identified, including CDK12, PAK1, PTK2, RIPK2 and TLK2. We demonstrate that proteogenomic analysis of breast cancer elucidates functional consequences of somatic mutations, narrows candidate nominations for driver genes within large deletions and amplified regions, and identifies therapeutic targets.
Molecular & Cellular Proteomics | 2014
Steven A. Carr; Susan E. Abbatiello; Bradley L. Ackermann; Christoph H. Borchers; Bruno Domon; Eric W. Deutsch; Russell P. Grant; Andrew N. Hoofnagle; Ruth Hüttenhain; John M. Koomen; Daniel C. Liebler; Tao Liu; Brendan MacLean; D. R. Mani; Elizabeth Mansfield; Hendrik Neubert; Amanda G. Paulovich; Lukas Reiter; Olga Vitek; Ruedi Aebersold; Leigh Anderson; Robert Bethem; Josip Blonder; Emily S. Boja; Julianne Cook Botelho; Michael T. Boyne; Ralph A. Bradshaw; Alma L. Burlingame; Daniel W. Chan; Hasmik Keshishian
Adoption of targeted mass spectrometry (MS) approaches such as multiple reaction monitoring (MRM) to study biological and biomedical questions is well underway in the proteomics community. Successful application depends on the ability to generate reliable assays that uniquely and confidently identify target peptides in a sample. Unfortunately, there is a wide range of criteria being applied to say that an assay has been successfully developed. There is no consensus on what criteria are acceptable and little understanding of the impact of variable criteria on the quality of the results generated. Publications describing targeted MS assays for peptides frequently do not contain sufficient information for readers to establish confidence that the tests work as intended or to be able to apply the tests described in their own labs. Guidance must be developed so that targeted MS assays with established performance can be made widely distributed and applied by many labs worldwide. To begin to address the problems and their solutions, a workshop was held at the National Institutes of Health with representatives from the multiple communities developing and employing targeted MS assays. Participants discussed the analytical goals of their experiments and the experimental evidence needed to establish that the assays they develop work as intended and are achieving the required levels of performance. Using this “fit-for-purpose” approach, the group defined three tiers of assays distinguished by their performance and extent of analytical characterization. Computational and statistical tools useful for the analysis of targeted MS results were described. Participants also detailed the information that authors need to provide in their manuscripts to enable reviewers and readers to clearly understand what procedures were performed and to evaluate the reliability of the peptide or protein quantification measurements reported. This paper presents a summary of the meeting and recommendations.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Shao-En Ong; Monica Schenone; Adam A. Margolin; Xiaoyu Li; Kathy Do; Mary Kathryn Doud; D. R. Mani; Letian Kuai; Xiang Wang; John L. Wood; Nicola Tolliday; Angela N. Koehler; Lisa A. Marcaurelle; Todd R. Golub; Robert J. Gould; Stuart L. Schreiber; Steven A. Carr
Most small-molecule probes and drugs alter cell circuitry by interacting with 1 or more proteins. A complete understanding of the interacting proteins and their associated protein complexes, whether the compounds are discovered by cell-based phenotypic or target-based screens, is extremely rare. Such a capability is expected to be highly illuminating—providing strong clues to the mechanisms used by small-molecules to achieve their recognized actions and suggesting potential unrecognized actions. We describe a powerful method combining quantitative proteomics (SILAC) with affinity enrichment to provide unbiased, robust and comprehensive identification of the proteins that bind to small-molecule probes and drugs. The method is scalable and general, requiring little optimization across different compound classes, and has already had a transformative effect on our studies of small-molecule probes. Here, we describe in full detail the application of the method to identify targets of kinase inhibitors and immunophilin binders.
Nature Biotechnology | 2011
Terri Addona; Xu Shi; Hasmik Keshishian; D. R. Mani; Michael Burgess; Michael A. Gillette; Karl R. Clauser; Dongxiao Shen; Gregory D. Lewis; Laurie A. Farrell; Michael A. Fifer; Marc S. Sabatine; Robert E. Gerszten; Steven A. Carr
We developed a pipeline to integrate the proteomic technologies used from the discovery to the verification stages of plasma biomarker identification and applied it to identify early biomarkers of cardiac injury from the blood of patients undergoing a therapeutic, planned myocardial infarction (PMI) for treatment of hypertrophic cardiomyopathy. Sampling of blood directly from patient hearts before, during and after controlled myocardial injury ensured enrichment for candidate biomarkers and allowed patients to serve as their own biological controls. LC-MS/MS analyses detected 121 highly differentially expressed proteins, including previously credentialed markers of cardiovascular disease and >100 novel candidate biomarkers for myocardial infarction (MI). Accurate inclusion mass screening (AIMS) qualified a subset of the candidates based on highly specific, targeted detection in peripheral plasma, including some markers unlikely to have been identified without this step. Analyses of peripheral plasma from controls and patients with PMI or spontaneous MI by quantitative multiple reaction monitoring mass spectrometry or immunoassays suggest that the candidate biomarkers may be specific to MI. This study demonstrates that modern proteomic technologies, when coherently integrated, can yield novel cardiovascular biomarkers meriting further evaluation in large, heterogeneous cohorts.
Cell | 2016
Hui Zhang; Tao Liu; Zhen Zhang; Samuel H. Payne; Bai Zhang; Jason E. McDermott; Jian-Ying Zhou; Vladislav A. Petyuk; Li Chen; Debjit Ray; Shisheng Sun; Feng Yang; Lijun Chen; Jing Wang; Punit Shah; Seong Won Cha; Paul Aiyetan; Sunghee Woo; Yuan Tian; Marina A. Gritsenko; Therese R. Clauss; Caitlin H. Choi; Matthew E. Monroe; Stefani N. Thomas; Song Nie; Chaochao Wu; Ronald J. Moore; Kun-Hsing Yu; David L. Tabb; David Fenyö
To provide a detailed analysis of the molecular components and underlying mechanisms associated with ovarian cancer, we performed a comprehensive mass-spectrometry-based proteomic characterization of 174 ovarian tumors previously analyzed by The Cancer Genome Atlas (TCGA), of which 169 were high-grade serous carcinomas (HGSCs). Integrating our proteomic measurements with the genomic data yielded a number of insights into disease, such as how different copy-number alternations influence the proteome, the proteins associated with chromosomal instability, the sets of signaling pathways that diverse genome rearrangements converge on, and the ones most associated with short overall survival. Specific protein acetylations associated with homologous recombination deficiency suggest a potential means for stratifying patients for therapy. In addition to providing a valuable resource, these findings provide a view of how the somatic genome drives the cancer proteome and associations between protein and post-translational modification levels and clinical outcomes in HGSC. VIDEO ABSTRACT.
Molecular & Cellular Proteomics | 2006
Jacob D. Jaffe; D. R. Mani; Kyriacos C. Leptos; George M. Church; Michael A. Gillette; Steven A. Carr
Quantitative proteomics holds considerable promise for elucidation of basic biology and for clinical biomarker discovery. However, it has been difficult to fulfill this promise due to over-reliance on identification-based quantitative methods and problems associated with chromatographic separation reproducibility. Here we describe new algorithms termed “Landmark Matching” and “Peak Matching” that greatly reduce these problems. Landmark Matching performs time base-independent propagation of peptide identities onto accurate mass LC-MS features in a way that leverages historical data derived from disparate data acquisition strategies. Peak Matching builds upon Landmark Matching by recognizing identical molecular species across multiple LC-MS experiments in an identity-independent fashion by clustering. We have bundled these algorithms together with other algorithms, data acquisition strategies, and experimental designs to create a Platform for Experimental Proteomic Pattern Recognition (PEPPeR). These developments enable use of established statistical tools previously limited to microarray analysis for treatment of proteomics data. We demonstrate that the proposed platform can be calibrated across 2.5 orders of magnitude and can perform robust quantification of ratios in both simple and complex mixtures with good precision and error characteristics across multiple sample preparations. We also demonstrate de novo marker discovery based on statistical significance of unidentified accurate mass components that changed between two mixtures. These markers were subsequently identified by accurate mass-driven MS/MS acquisition and demonstrated to be contaminant proteins associated with known proteins whose concentrations were designed to change between the two mixtures. These results have provided a real world validation of the platform for marker discovery.
Molecular & Cellular Proteomics | 2014
Philipp Mertins; Feng Yang; Tao Liu; D. R. Mani; Vladislav A. Petyuk; Michael A. Gillette; Karl R. Clauser; Jana W. Qiao; Marina A. Gritsenko; Ronald J. Moore; Douglas A. Levine; R. Reid Townsend; Petra Erdmann-Gilmore; Jacqueline Snider; Sherri R. Davies; Kelly V. Ruggles; David Fenyö; R. Thomas Kitchens; Shunqiang Li; Narcisco Olvera; Fanny Dao; Henry Rodriguez; Daniel W. Chan; Daniel C. Liebler; Forest M. White; Karin D. Rodland; Gordon B. Mills; Richard D. Smith; Amanda G. Paulovich; Matthew J. Ellis
Protein abundance and phosphorylation convey important information about pathway activity and molecular pathophysiology in diseases including cancer, providing biological insight, informing drug and diagnostic development, and guiding therapeutic intervention. Analyzed tissues are usually collected without tight regulation or documentation of ischemic time. To evaluate the impact of ischemia, we collected human ovarian tumor and breast cancer xenograft tissue without vascular interruption and performed quantitative proteomics and phosphoproteomics after defined ischemic intervals. Although the global expressed proteome and most of the >25,000 quantified phosphosites were unchanged after 60 min, rapid phosphorylation changes were observed in up to 24% of the phosphoproteome, representing activation of critical cancer pathways related to stress response, transcriptional regulation, and cell death. Both pan-tumor and tissue-specific changes were observed. The demonstrated impact of pre-analytical tissue ischemia on tumor biology mandates caution in interpreting stress-pathway activation in such samples and motivates reexamination of collection protocols for phosphoprotein analysis.
Molecular & Cellular Proteomics | 2013
Susan E. Abbatiello; D. R. Mani; Birgit Schilling; Brendan MacLean; Lisa J. Zimmerman; Xingdong Feng; Michael P. Cusack; Nell Sedransk; Steven C. Hall; Terri Addona; Simon Allen; Nathan G. Dodder; Mousumi Ghosh; Jason M. Held; Victoria Hedrick; H. Dorota Inerowicz; Angela M. Jackson; Hasmik Keshishian; Jong Won Kim; John S. Lyssand; C. Paige Riley; Paul A. Rudnick; Pawel Sadowski; Kent Shaddox; Derek Smith; Daniela M. Tomazela; Åsa Wahlander; Sofia Waldemarson; Corbin A. Whitwell; Jinsam You
Multiple reaction monitoring (MRM) mass spectrometry coupled with stable isotope dilution (SID) and liquid chromatography (LC) is increasingly used in biological and clinical studies for precise and reproducible quantification of peptides and proteins in complex sample matrices. Robust LC-SID-MRM-MS-based assays that can be replicated across laboratories and ultimately in clinical laboratory settings require standardized protocols to demonstrate that the analysis platforms are performing adequately. We developed a system suitability protocol (SSP), which employs a predigested mixture of six proteins, to facilitate performance evaluation of LC-SID-MRM-MS instrument platforms, configured with nanoflow-LC systems interfaced to triple quadrupole mass spectrometers. The SSP was designed for use with low multiplex analyses as well as high multiplex approaches when software-driven scheduling of data acquisition is required. Performance was assessed by monitoring of a range of chromatographic and mass spectrometric metrics including peak width, chromatographic resolution, peak capacity, and the variability in peak area and analyte retention time (RT) stability. The SSP, which was evaluated in 11 laboratories on a total of 15 different instruments, enabled early diagnoses of LC and MS anomalies that indicated suboptimal LC-MRM-MS performance. The observed range in variation of each of the metrics scrutinized serves to define the criteria for optimized LC-SID-MRM-MS platforms for routine use, with pass/fail criteria for system suitability performance measures defined as peak area coefficient of variation <0.15, peak width coefficient of variation <0.15, standard deviation of RT <0.15 min (9 s), and the RT drift <0.5min (30 s). The deleterious effect of a marginally performing LC-SID-MRM-MS system on the limit of quantification (LOQ) in targeted quantitative assays illustrates the use and need for a SSP to establish robust and reliable system performance. Use of a SSP helps to ensure that analyte quantification measurements can be replicated with good precision within and across multiple laboratories and should facilitate more widespread use of MRM-MS technology by the basic biomedical and clinical laboratory research communities.