Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisa M. Vergez is active.

Publication


Featured researches published by Lisa M. Vergez.


Nature Genetics | 2005

The complete genome sequence of Francisella tularensis, the causative agent of tularemia.

Pär Larsson; Petra C. F. Oyston; Patrick Chain; May C. Chu; Melanie Duffield; Hans-Henrik Fuxelius; Emilio Garcia; Greger Hälltorp; Daniel Johansson; Karen E. Isherwood; Peter D. Karp; Eva Larsson; Ying Liu; Stephen L. Michell; Joann L. Prior; Richard G. Prior; Stephanie Malfatti; Anders Sjöstedt; Kerstin Svensson; Nick Thompson; Lisa M. Vergez; Jonathan Wagg; Brendan W. Wren; Luther E. Lindler; Siv G. E. Andersson; Mats Forsman; Richard W. Titball

Francisella tularensis is one of the most infectious human pathogens known. In the past, both the former Soviet Union and the US had programs to develop weapons containing the bacterium. We report the complete genome sequence of a highly virulent isolate of F. tularensis (1,892,819 bp). The sequence uncovers previously uncharacterized genes encoding type IV pili, a surface polysaccharide and iron-acquisition systems. Several virulence-associated genes were located in a putative pathogenicity island, which was duplicated in the genome. More than 10% of the putative coding sequences contained insertion-deletion or substitution mutations and seemed to be deteriorating. The genome is rich in IS elements, including IS630 Tc-1 mariner family transposons, which are not expected in a prokaryote. We used a computational method for predicting metabolic pathways and found an unexpectedly high proportion of disrupted pathways, explaining the fastidious nutritional requirements of the bacterium. The loss of biosynthetic pathways indicates that F. tularensis is an obligate host-dependent bacterium in its natural life cycle. Our results have implications for our understanding of how highly virulent human pathogens evolve and will expedite strategies to combat them.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Burkholderia Xenovorans LB400 Harbors a Multi-Replicon, 9.73-Mbp Genome Shaped for Versatility

Patrick Chain; Vincent J. Denef; Konstantinos T. Konstantinidis; Lisa M. Vergez; Loreine Agulló; Valeria Latorre Reyes; Loren Hauser; Macarena Córdova; Luis Gómez; Myriam González; Miriam Land; Victoria Lao; Frank W. Larimer; John J. LiPuma; Eshwar Mahenthiralingam; Stephanie Malfatti; Christopher J. Marx; J. Jacob Parnell; Alban Ramette; Paul G. Richardson; Michael Seeger; Daryl J. Smith; Theodore Spilker; Woo Jun Sul; Tamara V. Tsoi; Luke E. Ulrich; Igor B. Zhulin; James M. Tiedje

Burkholderia xenovorans LB400 (LB400), a well studied, effective polychlorinated biphenyl-degrader, has one of the two largest known bacterial genomes and is the first nonpathogenic Burkholderia isolate sequenced. From an evolutionary perspective, we find significant differences in functional specialization between the three replicons of LB400, as well as a more relaxed selective pressure for genes located on the two smaller vs. the largest replicon. High genomic plasticity, diversity, and specialization within the Burkholderia genus are exemplified by the conservation of only 44% of the genes between LB400 and Burkholderia cepacia complex strain 383. Even among four B. xenovorans strains, genome size varies from 7.4 to 9.73 Mbp. The latter is largely explained by our findings that >20% of the LB400 sequence was recently acquired by means of lateral gene transfer. Although a range of genetic factors associated with in vivo survival and intercellular interactions are present, these genetic factors are likely related to niche breadth rather than determinants of pathogenicity. The presence of at least eleven “central aromatic” and twenty “peripheral aromatic” pathways in LB400, among the highest in any sequenced bacterial genome, supports this hypothesis. Finally, in addition to the experimentally observed redundancy in benzoate degradation and formaldehyde oxidation pathways, the fact that 17.6% of proteins have a better LB400 paralog than an ortholog in a different genome highlights the importance of gene duplication and repeated acquirement, which, coupled with their divergence, raises questions regarding the role of paralogs and potential functional redundancies in large-genome microbes.


Infection and Immunity | 2005

Whole-genome analyses of speciation events in pathogenic Brucellae.

Patrick Chain; Diego J. Comerci; Marcelo E. Tolmasky; Frank W. Larimer; Stephanie Malfatti; Lisa M. Vergez; Fernán Agüero; Miriam Land; Rodolfo A. Ugalde; Emilio Garcia

ABSTRACT Despite their high DNA identity and a proposal to group classical Brucella species as biovars of Brucella melitensis, the commonly recognized Brucella species can be distinguished by distinct biochemical and fatty acid characters, as well as by a marked host range (e.g., Brucella suis for swine, B. melitensis for sheep and goats, and Brucella abortus for cattle). Here we present the genome of B. abortus 2308, the virulent prototype biovar 1 strain, and its comparison to the two other human pathogenic Brucella species and to B. abortus field isolate 9-941. The global distribution of pseudogenes, deletions, and insertions supports previous indications that B. abortus and B. melitensis share a common ancestor that diverged from B. suis. With the exception of a dozen genes, the genetic complements of both B. abortus strains are identical, whereas the three species differ in gene content and pseudogenes. The pattern of species-specific gene inactivations affecting transcriptional regulators and outer membrane proteins suggests that these inactivations may play an important role in the establishment of host specificity and may have been a primary driver of speciation in the genus Brucella. Despite being nonmotile, the brucellae contain flagellum gene clusters and display species-specific flagellar gene inactivations, which lead to the putative generation of different versions of flagellum-derived structures and may contribute to differences in host specificity and virulence. Metabolic changes such as the lack of complete metabolic pathways for the synthesis of numerous compounds (e.g., glycogen, biotin, NAD, and choline) are consistent with adaptation of brucellae to an intracellular life-style.


Applied and Environmental Microbiology | 2006

Complete Genome Sequence of the Marine, Chemolithoautotrophic, Ammonia-Oxidizing Bacterium Nitrosococcus oceani ATCC 19707

Martin G. Klotz; Daniel J. Arp; Patrick S. G. Chain; Amal F. El-Sheikh; Loren Hauser; Norman G. Hommes; Frank W. Larimer; Stephanie Malfatti; Jeanette M. Norton; Amisha T. Poret-Peterson; Lisa M. Vergez; Bess B. Ward

ABSTRACT The gammaproteobacterium Nitrosococcus oceani (ATCC 19707) is a gram-negative obligate chemolithoautotroph capable of extracting energy and reducing power from the oxidation of ammonia to nitrite. Sequencing and annotation of the genome revealed a single circular chromosome (3,481,691 bp; G+C content of 50.4%) and a plasmid (40,420 bp) that contain 3,052 and 41 candidate protein-encoding genes, respectively. The genes encoding proteins necessary for the function of known modes of lithotrophy and autotrophy were identified. Contrary to betaproteobacterial nitrifier genomes, the N. oceani genome contained two complete rrn operons. In contrast, only one copy of the genes needed to synthesize functional ammonia monooxygenase and hydroxylamine oxidoreductase, as well as the proteins that relay the extracted electrons to a terminal electron acceptor, were identified. The N. oceani genome contained genes for 13 complete two-component systems. The genome also contained all the genes needed to reconstruct complete central pathways, the tricarboxylic acid cycle, and the Embden-Meyerhof-Parnass and pentose phosphate pathways. The N. oceani genome contains the genes required to store and utilize energy from glycogen inclusion bodies and sucrose. Polyphosphate and pyrophosphate appear to be integrated in this bacteriums energy metabolism, stress tolerance, and ability to assimilate carbon via gluconeogenesis. One set of genes for type I ribulose-1,5-bisphosphate carboxylase/oxygenase was identified, while genes necessary for methanotrophy and for carboxysome formation were not identified. The N. oceani genome contains two copies each of the genes or operons necessary to assemble functional complexes I and IV as well as ATP synthase (one H+-dependent F0F1 type, one Na+-dependent V type).


Proceedings of the National Academy of Sciences of the United States of America | 2008

Multiple genome sequences reveal adaptations of a phototrophic bacterium to sediment microenvironments

Yasuhiro Oda; Frank W. Larimer; Patrick Chain; Stephanie Malfatti; Maria V. Shin; Lisa M. Vergez; Loren Hauser; Miriam Land; Stephan Braatsch; J. Thomas Beatty; Dale A. Pelletier; Amy L. Schaefer; Caroline S. Harwood

The bacterial genus Rhodopseudomonas is comprised of photosynthetic bacteria found widely distributed in aquatic sediments. Members of the genus catalyze hydrogen gas production, carbon dioxide sequestration, and biomass turnover. The genome sequence of Rhodopseudomonas palustris CGA009 revealed a surprising richness of metabolic versatility that would seem to explain its ability to live in a heterogeneous environment like sediment. However, there is considerable genotypic diversity among Rhodopseudomonas isolates. Here we report the complete genome sequences of four additional members of the genus isolated from a restricted geographical area. The sequences confirm that the isolates belong to a coherent taxonomic unit, but they also have significant differences. Whole genome alignments show that the circular chromosomes of the isolates consist of a collinear backbone with a moderate number of genomic rearrangements that impact local gene order and orientation. There are 3,319 genes, 70% of the genes in each genome, shared by four or more strains. Between 10% and 18% of the genes in each genome are strain specific. Some of these genes suggest specialized physiological traits, which we verified experimentally, that include expanded light harvesting, oxygen respiration, and nitrogen fixation capabilities, as well as anaerobic fermentation. Strain-specific adaptations include traits that may be useful in bioenergy applications. This work suggests that against a backdrop of metabolic versatility that is a defining characteristic of Rhodopseudomonas, different ecotypes have evolved to take advantage of physical and chemical conditions in sediment microenvironments that are too small for human observation.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Polynucleobacter necessarius, a model for genome reduction in both free-living and symbiotic bacteria

Vittorio Boscaro; Michele Felletti; Claudia Vannini; Matthew S. Ackerman; Patrick Chain; Stephanie Malfatti; Lisa M. Vergez; Maria V. Shin; Thomas G. Doak; Michael Lynch; Giulio Petroni

Significance We have investigated multiple aspects of the Euplotes-Polynucleobacter system, which provides a unique opportunity for the study of an obligate symbiont with a closely related free-living organism that itself possesses a peculiarly reduced genome and metabolism. We confirmed the robustness and generality of patterns in the evolution of bacterial symbionts’ genome, adding at the same time new elements and hypotheses concerning genome reduction in both symbiotic and free-living bacteria. We argue that this system will provide an exceptionally useful model for investigations on symbiosis, because of its peculiarities and the commonness and ease of handling of the ciliate hosts. Genome sequences for independently derived Polynucleobacter symbionts will be particularly telling. We present the complete genomic sequence of the essential symbiont Polynucleobacter necessarius (Betaproteobacteria), which is a valuable case study for several reasons. First, it is hosted by a ciliated protist, Euplotes; bacterial symbionts of ciliates are still poorly known because of a lack of extensive molecular data. Second, the single species P. necessarius contains both symbiotic and free-living strains, allowing for a comparison between closely related organisms with different ecologies. Third, free-living P. necessarius strains are exceptional by themselves because of their small genome size, reduced metabolic flexibility, and high worldwide abundance in freshwater systems. We provide a comparative analysis of P. necessarius metabolism and explore the peculiar features of a genome reduction that occurred on an already streamlined genome. We compare this unusual system with current hypotheses for genome erosion in symbionts and free-living bacteria, propose modifications to the presently accepted model, and discuss the potential consequences of translesion DNA polymerase loss.


Journal of Bacteriology | 2011

Genome of Ochrobactrum anthropi ATCC 49188T, a Versatile Opportunistic Pathogen and Symbiont of Several Eukaryotic Hosts

Patrick Chain; Dorothy M. Lang; Diego J. Comerci; Stephanie Malfatti; Lisa M. Vergez; Maria Shin; Rodolfo A. Ugalde; Emilio Garcia; Marcelo E. Tolmasky

Ochrobactrum anthropi is a common soil alphaproteobacterium that colonizes a wide spectrum of organisms and is being increasingly recognized as an opportunistic human pathogen. Potentially life-threatening infections, such as endocarditis, are included in the list of reported O. anthropi infections. These reports, together with the scant number of studies and the organisms phylogenetic proximity to the highly pathogenic brucellae, make O. anthropi an attractive model of bacterial pathogenicity. Here we report the genome sequence of the type strain O. anthropi ATCC 49188, which revealed the presence of two chromosomes and four plasmids.


Journal of Bacteriology | 2012

Complete Genome Sequence of Francisella philomiragia ATCC 25017

Ahmet Zeytun; Stephanie Malfatti; Lisa M. Vergez; Maria Shin; Emilio Garcia; Patrick Chain

Francisella philomiragia is a saprophytic gammaproteobacterium found only occasionally in immunocompromised individuals and is the nearest neighbor to the causative agent of tularemia and category A select agent Francisella tularensis. To shed insight into the key genetic differences and the evolution of these two distinct lineages, we sequenced the first complete genome of F. philomiragia strain ATCC 25017, which was isolated as a free-living microorganism from water in Bear River Refuge, Utah.


PLOS ONE | 2016

Identification of Genome-Wide Mutations in Ciprofloxacin-Resistant F. tularensis LVS Using Whole Genome Tiling Arrays and Next Generation Sequencing

Crystal Jaing; Kevin S. McLoughlin; James B. Thissen; Adam Zemla; Shea N. Gardner; Lisa M. Vergez; Feliza Bourguet; Shalini Mabery; Viacheslav Y. Fofanov; Heather Koshinsky; Paul J. Jackson

Francisella tularensis is classified as a Class A bioterrorism agent by the U.S. government due to its high virulence and the ease with which it can be spread as an aerosol. It is a facultative intracellular pathogen and the causative agent of tularemia. Ciprofloxacin (Cipro) is a broad spectrum antibiotic effective against Gram-positive and Gram-negative bacteria. Increased Cipro resistance in pathogenic microbes is of serious concern when considering options for medical treatment of bacterial infections. Identification of genes and loci that are associated with Ciprofloxacin resistance will help advance the understanding of resistance mechanisms and may, in the future, provide better treatment options for patients. It may also provide information for development of assays that can rapidly identify Cipro-resistant isolates of this pathogen. In this study, we selected a large number of F. tularensis live vaccine strain (LVS) isolates that survived in progressively higher Ciprofloxacin concentrations, screened the isolates using a whole genome F. tularensis LVS tiling microarray and Illumina sequencing, and identified both known and novel mutations associated with resistance. Genes containing mutations encode DNA gyrase subunit A, a hypothetical protein, an asparagine synthase, a sugar transamine/perosamine synthetase and others. Structural modeling performed on these proteins provides insights into the potential function of these proteins and how they might contribute to Cipro resistance mechanisms.


Proceedings of the National Academy of Sciences of the United States of America | 2004

Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis

Patrick Chain; Elisabeth Carniel; Frank W. Larimer; Jane E. Lamerdin; P. O. Stoutland; W. M. Regala; Anca Georgescu; Lisa M. Vergez; Miriam Land; Vladimir L. Motin; Robert R. Brubaker; J. Fowler; J. Hinnebusch; M. Marceau; C. Medigue; M. Simonet; Viviane Chenal-Francisque; B. Souza; D. Dacheux; Jeffrey M. Elliott; A. Derbise; Loren Hauser; Emilio Garcia

Collaboration


Dive into the Lisa M. Vergez's collaboration.

Top Co-Authors

Avatar

Patrick Chain

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank W. Larimer

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Emilio Garcia

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Miriam Land

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Loren Hauser

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James M. Tiedje

Michigan State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge