Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisa Miorin is active.

Publication


Featured researches published by Lisa Miorin.


Cell Host & Microbe | 2016

Zika Virus Targets Human STAT2 to Inhibit Type I Interferon Signaling

Alesha Grant; Sanket S. Ponia; Shashank Tripathi; Vinod R. M. T. Balasubramaniam; Lisa Miorin; Marion Sourisseau; Megan C. Schwarz; Mari Paz Sánchez-Seco; Matthew J. Evans; Sonja M. Best; Adolfo García-Sastre

The ongoing epidemic of Zika virus (ZIKV) illustrates the importance of flaviviruses as emerging human pathogens. All vector-borne flaviviruses studied thus far have to overcome type I interferon (IFN) to replicate and cause disease in vertebrates. The mechanism(s) by which ZIKV antagonizes IFN signaling is unknown. Here, we report that the nonstructural protein NS5 of ZIKV and other flaviviruses examined could suppress IFN signaling, but through different mechanisms. ZIKV NS5 expression resulted in proteasomal degradation of the IFN-regulated transcriptional activator STAT2 from humans, but not mice, which may explain the requirement for IFN deficiency to observe ZIKV-induced disease in mice. The mechanism of ZIKV NS5 resembles dengue virus (DENV) NS5 and not its closer relative, Spondweni virus (SPOV). However, unlike DENV, ZIKV did not require the E3 ubiquitin ligase UBR4 to induce STAT2 degradation. Hence, flavivirus NS5 proteins exhibit a remarkable functional convergence in IFN antagonism, albeit by virus-specific mechanisms.


Journal of Virology | 2013

Three-Dimensional Architecture of Tick-Borne Encephalitis Virus Replication Sites and Trafficking of the Replicated RNA

Lisa Miorin; Inés Romero-Brey; Paolo Maiuri; Simone Hoppe; Jacomine Krijnse-Locker; Ralf Bartenschlager; Alessandro Marcello

ABSTRACT Flavivirus replication is accompanied by the rearrangement of cellular membranes that may facilitate viral genome replication and protect viral components from host cell responses. The topological organization of viral replication sites and the fate of replicated viral RNA are not fully understood. We exploited electron microscopy to map the organization of tick-borne encephalitis virus (TBEV) replication compartments in infected cells and in cells transfected with a replicon. Under both conditions, 80-nm vesicles were seen within the lumen of the endoplasmic reticulum (ER) that in infected cells also contained virions. By electron tomography, the vesicles appeared as invaginations of the ER membrane, displaying a pore that could enable release of newly synthesized viral RNA into the cytoplasm. To track the fate of TBEV RNA, we took advantage of our recently developed method of viral RNA fluorescent tagging for live-cell imaging combined with bleaching techniques. TBEV RNA was found outside virus-induced vesicles either associated to ER membranes or free to move within a defined area of juxtaposed ER cisternae. From our results, we propose a biologically relevant model of the possible topological organization of flavivirus replication compartments composed of replication vesicles and a confined extravesicular space where replicated viral RNA is retained. Hence, TBEV modifies the ER membrane architecture to provide a protected environment for viral replication and for the maintenance of newly replicated RNA available for subsequent steps of the virus life cycle.


Cell Host & Microbe | 2014

The interferon signaling antagonist function of yellow fever virus NS5 protein is activated by type I interferon.

Maudry Laurent-Rolle; Juliet Morrison; Ricardo Rajsbaum; Jesica M. Levingston Macleod; G. Pisanelli; Alissa M. Pham; Juan Ayllon; Lisa Miorin; Carles Martínez-Romero; Benjamin R. tenOever; Adolfo García-Sastre

To successfully establish infection, flaviviruses have to overcome the antiviral state induced by type I interferon (IFN-I). The nonstructural NS5 proteins of several flaviviruses antagonize IFN-I signaling. Here we show that yellow fever virus (YFV) inhibits IFN-I signaling through a unique mechanism that involves binding of YFV NS5 to the IFN-activated transcription factor STAT2 only in cells that have been stimulated with IFN-I. This NS5-STAT2 interaction requires IFN-I-induced tyrosine phosphorylation of STAT1 and the K63-linked polyubiquitination at a lysine in the N-terminal region of YFV NS5. We identified TRIM23 as the E3 ligase that interacts with and polyubiquitinates YFV NS5 to promote its binding to STAT2 and trigger IFN-I signaling inhibition. Our results demonstrate the importance of YFV NS5 in overcoming the antiviral action of IFN-I and offer a unique example of a viral protein that is activated by the same host pathway that it inhibits.


Journal of Virology | 2014

A single amino acid substitution in the novel H7N9 influenza a virus NS1 protein increases CPSF30 binding and virulence

Juan Ayllon; Patricia Domingues; Ricardo Rajsbaum; Lisa Miorin; Mirco Schmolke; Benjamin G. Hale; Adolfo García-Sastre

ABSTRACT Although an effective interferon antagonist in human and avian cells, the novel H7N9 influenza virus NS1 protein is defective at inhibiting CPSF30. An I106M substitution in H7N9 NS1 can restore CPSF30 binding together with the ability to block host gene expression. Furthermore, a recombinant virus expressing H7N9 NS1-I106M replicates to higher titers in vivo, and is subtly more virulent, than the parental virus. Natural polymorphisms in H7N9 NS1 that enhance CPSF30 binding may be cause for concern.


Journal of Virology | 2014

Tumor Suppressor Cylindromatosis (CYLD) Controls HIV Transcription in an NF-κB-Dependent Manner

Lara Manganaro; Lars Pache; Tobias Herrmann; John Marlett; Young Hwang; Jeffrey P. Murry; Lisa Miorin; Adrian T. Ting; Renate König; Adolfo García-Sastre; Frederic D. Bushman; Sumit K. Chanda; John A. T. Young; Ana Fernandez-Sesma; Viviana Simon

ABSTRACT Characterizing the cellular factors that play a role in the HIV replication cycle is fundamental to fully understanding mechanisms of viral replication and pathogenesis. Whole-genome small interfering RNA (siRNA) screens have identified positive and negative regulators of HIV replication, providing starting points for investigating new cellular factors. We report here that silencing of the deubiquitinase cylindromatosis protein (CYLD), increases HIV infection by enhancing HIV long terminal repeat (LTR)-driven transcription via the NF-κB pathway. CYLD is highly expressed in CD4+ T lymphocytes, monocyte-derived macrophages, and dendritic cells. We found that CYLD silencing increases HIV replication in T cell lines. We confirmed the positive role of CYLD silencing in HIV infection in primary human CD4+ T cells, in which CYLD protein was partially processed upon activation. Lastly, Jurkat T cells latently infected with HIV (JLat cells) were more responsive to phorbol 12-myristate 13-acetate (PMA) reactivation in the absence of CYLD, indicating that CYLD activity could play a role in HIV reactivation from latency. In summary, we show that CYLD acts as a potent negative regulator of HIV mRNA expression by specifically inhibiting NF-κB-driven transcription. These findings suggest a function for this protein in modulating productive viral replication as well as in viral reactivation. IMPORTANCE HIV transcription is regulated by a number of host cell factors. Here we report that silencing of the lysine 63 deubiquitinase CYLD increases HIV transcription in an NF-κB-dependent manner. We show that CYLD is expressed in HIV target cells and that its silencing increases HIV infection in transformed T cell lines as well as primary CD4+ T cells. Similarly, reactivation of latent provirus was facilitated in the absence of CYLD. These data suggest that CYLD, which is highly expressed in CD4+ T cells, can control HIV transcription in productive infection as well as during reactivation from latency.


Methods | 2016

Visual detection of Flavivirus RNA in living cells.

Lisa Miorin; Paolo Maiuri; Alessandro Marcello

Abstract Flaviviruses include a wide range of important human pathogens delivered by insects or ticks. These viruses have a positive-stranded RNA genome that is replicated in the cytoplasm of the infected cell. The viral RNA genome is the template for transcription by the virally encoded RNA polymerase and for translation of the viral proteins. Furthermore, the double-stranded RNA intermediates of viral replication are believed to trigger the innate immune response through interaction with cytoplasmic cellular sensors. Therefore, understanding the subcellular distribution and dynamics of Flavivirus RNAs is of paramount importance to understand the interaction of the virus with its cellular host, which could be of insect, tick or mammalian, including human, origin. Recent advances on the visualization of Flavivirus RNA in living cells together with the development of methods to measure the dynamic properties of viral RNA are reviewed and discussed in this essay. In particular the application of bleaching techniques such as fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP) are analysed in the context of tick-borne encephalitis virus replication. Conclusions driven by this approached are discussed in the wider context Flavivirus infection.


Biochemical and Biophysical Research Communications | 2017

Antagonism of type I interferon by flaviviruses

Lisa Miorin; Ana M. Maestre; Ana Fernandez-Sesma; Adolfo García-Sastre

The prompt and tightly controlled induction of type I interferon is a central event of the immune defense against viral infection. Flaviviruses comprise a large family of arthropod-borne positive-stranded RNA viruses, many of which represent a serious threat to global human health due to their high rates of morbidity and mortality. All flaviviruses studied so far have been shown to counteract the hosts immune response to establish a productive infection and facilitate viral spread. Here, we review the current knowledge on the main strategies that human pathogenic flaviviruses utilize to escape both type I IFN induction and effector pathways. A better understanding of the specific mechanisms by which flaviviruses activate and evade innate immune responses is critical for the development of better therapeutics and vaccines.


Journal of Virology | 2017

The host E3-Ubiquitin ligase TRIM6 ubiquitinates the Ebola virus VP35 protein and promotes virus replication

Preeti Bharaj; Colm Atkins; Priya Luthra; Maria Isabel Giraldo; Brian E. Dawes; Lisa Miorin; Jeffrey R. Johnson; Nevan J. Krogan; Christopher F. Basler; Alexander N. Freiberg; Ricardo Rajsbaum

ABSTRACT Ebola virus (EBOV), a member of the Filoviridae family, is a highly pathogenic virus that causes severe hemorrhagic fever in humans and is responsible for epidemics throughout sub-Saharan, central, and West Africa. The EBOV genome encodes VP35, an important viral protein involved in virus replication by acting as an essential cofactor of the viral polymerase as well as a potent antagonist of the host antiviral type I interferon (IFN-I) system. By using mass spectrometry analysis and coimmunoprecipitation assays, we show here that VP35 is ubiquitinated on lysine 309 (K309), a residue located on its IFN antagonist domain. We also found that VP35 interacts with TRIM6, a member of the E3-ubiquitin ligase tripartite motif (TRIM) family. We recently reported that TRIM6 promotes the synthesis of unanchored K48-linked polyubiquitin chains, which are not covalently attached to any protein, to induce efficient antiviral IFN-I-mediated responses. Consistent with this notion, VP35 also associated noncovalently with polyubiquitin chains and inhibited TRIM6-mediated IFN-I induction. Intriguingly, we also found that TRIM6 enhances EBOV polymerase activity in a minigenome assay and TRIM6 knockout cells have reduced replication of infectious EBOV, suggesting that VP35 hijacks TRIM6 to promote EBOV replication through ubiquitination. Our work provides evidence that TRIM6 is an important host cellular factor that promotes EBOV replication, and future studies will focus on whether TRIM6 could be targeted for therapeutic intervention against EBOV infection. IMPORTANCE EBOV belongs to a family of highly pathogenic viruses that cause severe hemorrhagic fever in humans and other mammals with high mortality rates (40 to 90%). Because of its high pathogenicity and lack of licensed antivirals and vaccines, EBOV is listed as a tier 1 select-agent risk group 4 pathogen. An important mechanism for the severity of EBOV infection is its suppression of innate immune responses. The EBOV VP35 protein contributes to pathogenesis, because it serves as an essential cofactor of the viral polymerase as well as a potent antagonist of innate immunity. However, how VP35 function is regulated by host cellular factors is poorly understood. Here, we report that the host E3-ubiquitin ligase TRIM6 promotes VP35 ubiquitination and is important for efficient virus replication. Therefore, our study identifies a new host factor, TRIM6, as a potential target in the development of antiviral drugs against EBOV.


Immunity | 2014

Unanchored K48-Linked Polyubiquitin Synthesized by the E3-Ubiquitin Ligase TRIM6 Stimulates the Interferon-IKKε Kinase-Mediated Antiviral Response

Ricardo Rajsbaum; Gijs A. Versteeg; Sonja Schmid; Ana M. Maestre; Alan Belicha-Villanueva; Carles Martínez-Romero; Jenish R. Patel; Juliet Morrison; G. Pisanelli; Lisa Miorin; Maudry Laurent-Rolle; Hong M. Moulton; David A. Stein; Ana Fernandez-Sesma; Benjamin R. tenOever; Adolfo García-Sastre


Reference Module in Biomedical Sciences#R##N#Encyclopedia of Immunobiology | 2016

Intrinsic Cellular Defenses (TRIMS) in Modulating Viral Infection and Immunity

Adolfo García-Sastre; Lisa Miorin

Collaboration


Dive into the Lisa Miorin's collaboration.

Top Co-Authors

Avatar

Adolfo García-Sastre

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Ricardo Rajsbaum

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Ana Fernandez-Sesma

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Ana M. Maestre

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Benjamin R. tenOever

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Carles Martínez-Romero

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maudry Laurent-Rolle

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

G. Pisanelli

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Alan Belicha-Villanueva

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge