Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lok R. Pokhrel is active.

Publication


Featured researches published by Lok R. Pokhrel.


Science of The Total Environment | 2014

Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: Comparison between general linear model-predicted and observed toxicity

Thilini Silva; Lok R. Pokhrel; Brajesh Dubey; Thabet Tolaymat; Kurt J. Maier; Xuefeng Liu

Mechanism underlying nanotoxicity has remained elusive. Hence, efforts to understand whether nanoparticle properties might explain its toxicity are ongoing. Considering three different types of organo-coated silver nanoparticles (AgNPs): citrate-coated AgNP, polyvinylpyrrolidone-coated AgNP, and branched polyethyleneimine-coated AgNP, with different surface charge scenarios and core particle sizes, herein we systematically evaluate the potential role of particle size and surface charge on the toxicity of the three types of AgNPs against two model organisms, Escherichia coli and Daphnia magna. We find particle size, surface charge, and concentration dependent toxicity of all the three types of AgNPs against both the test organisms. Notably, Ag(+) (as added AgNO3) toxicity is greater than each type of AgNPs tested and the toxicity follows the trend: AgNO3 > BPEI-AgNP > Citrate-AgNP > PVP-AgNP. Modeling particle properties using the general linear model (GLM), a significant interaction effect of primary particle size and surface charge emerges that can explain empirically-derived acute toxicity with great precision. The model explains 99.9% variation of toxicity in E. coli and 99.8% variation of toxicity in D. magna, revealing satisfactory predictability of the regression models developed to predict the toxicity of the three organo-coated AgNPs. We anticipate that the use of GLM to satisfactorily predict the toxicity based on nanoparticle physico-chemical characteristics could contribute to our understanding of nanotoxicology and underscores the need to consider potential interactions among nanoparticle properties when explaining nanotoxicity.


Environmental Science & Technology | 2013

Impacts of Select Organic Ligands on the Colloidal Stability, Dissolution Dynamics, and Toxicity of Silver Nanoparticles

Lok R. Pokhrel; Brajesh Dubey; Phillip R. Scheuerman

Key understanding of potential transformations that may occur on silver nanoparticle (AgNP) surface upon interaction with naturally ubiquitous organic ligands (e.g., -SH (thoil), humic acid, or -COO (carboxylate)) is limited. Herein we investigated how dissolved organic carbon (DOC), -SH (in cysteine, a well-known Ag(+) chelating agent), and -COO (in trolox, a well-known antioxidant) could alter the colloidal stability, dissolution rate, and toxicity of citrate-functionalized AgNPs (citrate-AgNPs) against a keystone crustacean Daphnia magna. Cysteine, DOC, or trolox amendment of citrate-AgNPs differentially modified particle size, surface properties (charge, plasmonic spectra), and ion release dynamics, thereby attenuating (with cysteine or trolox) or promoting (with DOC) AgNP toxicity. Except with DOC amendment, the combined toxicity of AgNPs and released Ag under cysteine or trolox amendment was lower than of AgNO3 alone. The results of this study show that citrate-AgNP toxicity can be associated with oxidative stress, ion release, and the organism biology. Our evidence suggests that specific organic ligands available in the receiving waters can differentially surface modify AgNPs and alter their environmental persistence (changing dissolution dynamics) and subsequently the toxicity; hence, we caveat to generalize that surface modified nanoparticles upon environmental release may not be toxic to receptor organisms.


Environmental Science & Technology | 2012

Potential Impact of Low-Concentration Silver Nanoparticles on Predator–Prey Interactions between Predatory Dragonfly Nymphs and Daphnia magna as a Prey

Lok R. Pokhrel; Brajesh Dubey

This study investigated the potential impacts of low-concentration citrate-coated silver nanoparticles (citrate-nAg; 2 μg L(-1) as total Ag) on the interactions of Daphnia magna Straus (as a prey) with the predatory dragonfly ( Anax junius : Odonata) nymph using the behavioral, survival, and reproductive end points. Four different toxicity bioassays were evaluated: (i) horizontal migration; (ii) vertical migration; (iii) 48 h survival; and (iv) 21 day reproduction; using four different treatment combinations: (i) Daphnia + citrate-nAg; (ii) Daphnia + predator; (iii) Daphnia + citrate-nAg + predator; and (iv) Daphnia only (control). Daphnia avoided the predators using the horizontal and vertical movements, indicating that Daphnia might have perceived a significant risk of predation. However, with citrate-nAg + predator treatment, Daphnia response did not differ from control in the vertical migration test, suggesting that Daphnia were unable to detect the presence of predator with citrate-nAg treatment and this may have potential implication on daphnids population structure owing to predation risk. The 48 h survival test showed a significant mortality of Daphnia individuals in the presence of predators, with or without citrate-nAg, in the test environment. Average reproduction of daphnids increased by 185% with low-concentration citrate-nAg treatment alone but was severely compromised in the presence of predators (decreased by 91.3%). Daphnia reproduction was slightly enhanced by approximately 128% with citrate-nAg + predator treatment. Potential mechanisms of these differential effects of low-concentration citrate-nAg, with or without predators, are discussed. Because silver dissolution was minimal, the observed toxicity could not be explained by dissolved Ag alone. These findings offer novel insights into how exposure to low-concentration silver nanoparticles could influence predator-prey interactions in the fresh water systems.


Science of The Total Environment | 2012

Rapid screening of aquatic toxicity of several metal-based nanoparticles using the MetPLATE™ bioassay

Lok R. Pokhrel; Thilini Silva; Brajesh Dubey; Amro M. El Badawy; Thabet Tolaymat; Phillip R. Scheuerman

Current understanding of potential toxicity of engineered nanomaterials to aquatic microorganisms is limited for risk assessment and management. Here we evaluate if the MetPLATE™ test can be used as an effective and rapid screening tool to test for potential aquatic toxicity of various metal-based nanoparticles (NPs). The MetPLATE bioassay is a heavy metal sensitive test based on β-galactosidase activity in Escherichia coli. Five different types of metal-based NPs were screened for toxicity: (1) citrate coated nAg (Citrate-nanosilver), (2) polyvinylpyrrolidone coated nAg (PVP-nAg), (3) uncoated nZnO, (4) uncoated nTiO(2) and (5) 1-Octadecylamine coated CdSe Quantum Dots (CdSe QDs); and compared with their corresponding ionic salt toxicity. Citrate-nAg was further fractionated into clean Citrate-nAg, unclean Citrate-nAg and permeate using a tangential flow filtration (TFF) system to eliminate residual ions and impurities from the stock Citrate-nAg suspension and also to differentiate between ionic- versus nano-specific toxicity. Our results showed that nAg, nZnO and CdSe QDs were less toxic than their corresponding ionic salts tested, while nano- or ionic form of TiO(2) was not toxic as high as 2.5 g L(-1) to the MetPLATE™ bacteria. Although coating-dependent toxicity was noticeable between two types of Ag NPs evaluated, particle size and surface charge were not adequate to explain the observed toxicity; hence, the toxicity appeared to be material-specific. Overall, the toxicity followed the trend: CdCl(2)>AgNO(3)>PVP-nAg>unclean Citrate-nAg>clean Citrate-nAg>ZnSO(4)>nZnO>CdSe QDs>nTiO(2)/TiO(2). These results indicate that an evaluation of β-galactosidase inhibition in MetPLATE™ E. coli can be an important consideration for rapid screening of metal-based NP toxicity, and should facilitate ecological risk assessment of these emerging contaminants.


Environmental science. Nano | 2014

Natural water chemistry (dissolved organic carbon, pH, and hardness) modulates colloidal stability, dissolution, and antimicrobial activity of citrate functionalized silver nanoparticles

Lok R. Pokhrel; Brajesh Dubey; Phillip R. Scheuerman

Knowledge about whether/how natural water chemistry influences the fate, dissolution, and toxicity of silver nanoparticles (AgNPs) should contribute to ecological risk assessment and informed decision making. The effects of three critical water chemistry parameters – dissolved organic carbon (DOC), pH, and hardness – were investigated on the colloidal stability, dissolution dynamics, and antimicrobial activity of citrate-functionalized AgNPs (citrate–AgNPs) against Escherichia coli. Toxicities of citrate–AgNPs and AgNO3 were also determined in the river water samples collected across three seasons (for seven months). Detectable changes in hydrodynamic diameter, surface charge, and plasmonic resonance revealed the modulating effects of the water chemistry parameters on the colloidal stability of citrate–AgNPs. Although, overall Ag release from citrate–AgNPs was low (0.33–3.62%), it increased with increasing DOC concentrations (0–20 mg L−1) but decreased with increasing pH (5–7.5) or hardness (150–280 mg L−1). Citrate–AgNP toxicity was 3–44 fold lower than of AgNO3 (Ag mass basis). Notably, higher DOC or pH conferred protection to E. coli against citrate–AgNPs or AgNO3; increasing solution hardness tended to enhance toxicity, however. Citrate–AgNPs or AgNO3 toxicity in the river water matrix revealed no seasonality. Generalized linear models developed, by parameterizing particle properties, could fairly predict empirically-derived nanotoxicity. Our results show that particle size, surface properties, ion release kinetics, and toxicity of citrate–AgNPs can be modified upon release into aquatic environments, suggesting potential implications to ecosystem health and functions.


Environmental Toxicology and Chemistry | 2016

Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles.

Christian P. Andersen; George L. King; Milt Plocher; Marjorie J. Storm; Lok R. Pokhrel; Mark G. Johnson; Paul T. Rygiewicz

Ten agronomic plant species were exposed to different concentrations of nano-titanium dioxide (nTiO2 ) or nano-cerium oxide (nCeO2 ) (0 μg/mL, 250 μg/mL, 500 μg/mL, and 1000 μg/mL) to examine potential effects on germination and early seedling development. The authors modified a standard test protocol developed for soluble chemicals (OPPTS 850.4200) to determine if such an approach might be useful for screening engineered nanomaterials (ENMs) and whether there were differences in response across a range of commercially important plant species to 2 common metal oxide ENMs. Eight of 10 species responded to nTiO2 , and 5 species responded to nCeO2 . Overall, it appeared that early root growth may be a more sensitive indicator of potential effects from ENM exposure than germination. The observed effects did not always relate to the exposure concentration, indicating that mass-based concentration may not fully explain the developmental effects of these 2 ENMs. The results suggest that nTiO2 and nCeO2 have different effects on early plant growth of agronomic species, with unknown effects at later stages of the life cycle. In addition, standard germination tests, which are commonly used for toxicity screening of new materials, may not detect the subtle but potentially more important changes associated with early growth and development in terrestrial plants. Environ Toxicol Chem 2016;35:2223-2229. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.


Critical Reviews in Environmental Science and Technology | 2013

Global Scenarios of Metal Mining, Environmental Repercussions, Public Policies, and Sustainability: A Review

Lok R. Pokhrel; Brajesh Dubey

With rising valuation of mineral commodities, mining has been envisioned as a profitable industry regardless of many challenges it entails. This comprehensive review provides the state of knowledge about several aspects of the metal mining industry, including (a) the basic mining processes with reasons for mine closure, (b) the potential environmental and human health impacts associated with mining, (c) the potential techniques for impact mitigation, (d) the latest production statistics for the base and precious metals with identification of currently operational major metal mines for different countries, and (e) how mining activities are regulated in different nations. Finally, the authors provide critical appraisal on the debatable issue of mining and sustainability to stimulate thoughts on how metal mining can be made sustainable, and suggest a path forward.


Expert Opinion on Environmental Biology | 2013

Evaluation of Experimental Design Options in Environmental Nano-Science Research

Lok R. Pokhrel; Phillip R. Scheuerman; Brajesh Dubey

Evaluation of Experimental Design Options in Environmental Nano-Science Research As an experimental research design plays a pivotal role in executing a research problem, it is imperative of a researcher to develop a suitable and sound research design. Utilizing robust statistical methods can further enhance the study power and thus allow drawing a logical conclusion. The same holds true for basic environmental science research, including research related to the effects of engineered nanomaterials in the environment.


Science of The Total Environment | 2014

Preferential interaction of Na+ over K+ with carboxylate-functionalized silver nanoparticles

Lok R. Pokhrel; Christian P. Andersen; Paul T. Rygiewicz; Mark G. Johnson

Elucidating mechanistic interactions between monovalent cations (Na(+)/K(+)) and engineered nanoparticle surfaces to alter particle stability in polar media have received little attention. We investigated relative preferential interaction of Na(+) and K(+) with carboxylate-functionalized silver nanoparticles (carboxylate-AgNPs) to determine if interaction preference followed the Hofmeister series (Na(+)>K(+)). We hypothesized that Na(+) will show greater affinity than K(+) to pair with carboxylates on AgNP surfaces, thereby destabilizing the colloidal system. Destabilization upon Na(+) or K(+) interacting with carboxylate-AgNPs was evaluated probing changes in multiple physicochemical characteristics: surface plasmon resonance/optical absorbance, electrical conductivity, pH, hydrodynamic diameter, electrophoretic mobility, surface charge, amount of Na(+)/K(+) directly associated with AgNPs, and Ag(+) dissociation kinetics. We show that Na(+) and K(+) react differently, indicating local Na(+) pairing with carboxylates on AgNP surfaces is kinetically faster and remarkably favored over K(+), thus supporting Hofmeister ordering. Our results suggest that AgNPs may transform into micron-size aggregates upon release into aqueous environments and that the fate of such aggregates may need consideration when assessing environmental risk.


Science of The Total Environment | 2013

Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles

Lok R. Pokhrel; Brajesh Dubey

Collaboration


Dive into the Lok R. Pokhrel's collaboration.

Top Co-Authors

Avatar

Brajesh Dubey

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Phillip R. Scheuerman

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

Christian P. Andersen

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Mark G. Johnson

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Paul T. Rygiewicz

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Thabet Tolaymat

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Thilini Silva

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kurt J. Maier

East Tennessee State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge