Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lori S. Hart is active.

Publication


Featured researches published by Lori S. Hart.


The EMBO Journal | 2010

The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation

Jiangbin Ye; Monika Kumanova; Lori S. Hart; Kelly Sloane; Haiyan Zhang; Diego N De Panis; Ekaterina Bobrovnikova-Marjon; J. Alan Diehl; David Ron; Constantinos Koumenis

The transcription factor ATF4 regulates the expression of genes involved in amino acid metabolism, redox homeostasis and ER stress responses, and it is overexpressed in human solid tumours, suggesting that it has an important function in tumour progression. Here, we report that inhibition of ATF4 expression blocked proliferation and survival of transformed cells, despite an initial activation of cytoprotective macroautophagy. Knockdown of ATF4 significantly reduced the levels of asparagine synthetase (ASNS) and overexpression of ASNS or supplementation of asparagine in trans, reversed the proliferation block and increased survival in ATF4 knockdown cells. Both amino acid and glucose deprivation, stresses found in solid tumours, activated the upstream eukaryotic initiation factor 2α (eIF2α) kinase GCN2 to upregulate ATF4 target genes involved in amino acid synthesis and transport. GCN2 activation/overexpression and increased phospho‐eIF2α were observed in human and mouse tumours compared with normal tissues and abrogation of ATF4 or GCN2 expression significantly inhibited tumour growth in vivo. We conclude that the GCN2‐eIF2α‐ATF4 pathway is critical for maintaining metabolic homeostasis in tumour cells, making it a novel and attractive target for anti‐tumour approaches.


Journal of Clinical Investigation | 2012

ER stress–mediated autophagy promotes Myc-dependent transformation and tumor growth

Lori S. Hart; John T. Cunningham; Tatini Datta; Souvik Dey; Feven Tameire; Stacey L. Lehman; Bo Qiu; Haiyan Zhang; George J. Cerniglia; Meixia Bi; Yan Li; Yan Gao; Huayi Liu; Changhong Li; Amit Maity; Andrei Thomas-Tikhonenko; Alexander E. Perl; Albert C. Koong; Serge Y. Fuchs; J. Alan Diehl; Ian G. Mills; Davide Ruggero; Constantinos Koumenis

The proto-oncogene c-Myc paradoxically activates both proliferation and apoptosis. In the pathogenic state, c-Myc-induced apoptosis is bypassed via a critical, yet poorly understood escape mechanism that promotes cellular transformation and tumorigenesis. The accumulation of unfolded proteins in the ER initiates a cellular stress program termed the unfolded protein response (UPR) to support cell survival. Analysis of spontaneous mouse and human lymphomas demonstrated significantly higher levels of UPR activation compared with normal tissues. Using multiple genetic models, we demonstrated that c-Myc and N-Myc activated the PERK/eIF2α/ATF4 arm of the UPR, leading to increased cell survival via the induction of cytoprotective autophagy. Inhibition of PERK significantly reduced Myc-induced autophagy, colony formation, and tumor formation. Moreover, pharmacologic or genetic inhibition of autophagy resulted in increased Myc-dependent apoptosis. Mechanistically, we demonstrated an important link between Myc-dependent increases in protein synthesis and UPR activation. Specifically, by employing a mouse minute (L24+/-) mutant, which resulted in wild-type levels of protein synthesis and attenuation of Myc-induced lymphomagenesis, we showed that Myc-induced UPR activation was reversed. Our findings establish a role for UPR as an enhancer of c-Myc-induced transformation and suggest that UPR inhibition may be particularly effective against malignancies characterized by c-Myc overexpression.


Journal of Clinical Investigation | 2014

Targeting ER stress–induced autophagy overcomes BRAF inhibitor resistance in melanoma

Xiao Hong Ma; Sheng Fu Piao; Souvik Dey; Quentin McAfee; Giorgos C. Karakousis; Jessie Villanueva; Lori S. Hart; Samuel M. Levi; Janice Hu; Gao Zhang; Rossitza Lazova; Vincent Klump; John M. Pawelek; Xiaowei Xu; Wei Xu; Lynn M. Schuchter; Michael A. Davies; Meenhard Herlyn; Jeffrey D. Winkler; Constantinos Koumenis; Ravi K. Amaravadi

Melanomas that result from mutations in the gene encoding BRAF often become resistant to BRAF inhibition (BRAFi), with multiple mechanisms contributing to resistance. While therapy-induced autophagy promotes resistance to a number of therapies, especially those that target PI3K/mTOR signaling, its role as an adaptive resistance mechanism to BRAFi is not well characterized. Using tumor biopsies from BRAF(V600E) melanoma patients treated either with BRAFi or with combined BRAF and MEK inhibition, we found that BRAFi-resistant tumors had increased levels of autophagy compared with baseline. Patients with higher levels of therapy-induced autophagy had drastically lower response rates to BRAFi and a shorter duration of progression-free survival. In BRAF(V600E) melanoma cell lines, BRAFi or BRAF/MEK inhibition induced cytoprotective autophagy, and autophagy inhibition enhanced BRAFi-induced cell death. Shortly after BRAF inhibitor treatment in melanoma cell lines, mutant BRAF bound the ER stress gatekeeper GRP78, which rapidly expanded the ER. Disassociation of GRP78 from the PKR-like ER-kinase (PERK) promoted a PERK-dependent ER stress response that subsequently activated cytoprotective autophagy. Combined BRAF and autophagy inhibition promoted tumor regression in BRAFi-resistant xenografts. These data identify a molecular pathway for drug resistance connecting BRAFi, the ER stress response, and autophagy and provide a rationale for combination approaches targeting this resistance pathway.


Clinical Cancer Research | 2013

Dual CDK4/CDK6 Inhibition Induces Cell-Cycle Arrest and Senescence in Neuroblastoma

JulieAnn Rader; Mike R. Russell; Lori S. Hart; Michael S. Nakazawa; Lili T. Belcastro; Daniel Martinez; Yimei Li; Erica L. Carpenter; Edward F. Attiyeh; Sharon J. Diskin; Sunkyu Kim; Sudha Parasuraman; Giordano Caponigro; Robert W. Schnepp; Andrew C. Wood; Bruce R. Pawel; Kristina A. Cole; John M. Maris

Purpose: Neuroblastoma is a pediatric cancer that continues to exact significant morbidity and mortality. Recently, a number of cell-cycle proteins, particularly those within the Cyclin D/CDK4/CDK6/RB network, have been shown to exert oncogenic roles in neuroblastoma, suggesting that their therapeutic exploitation might improve patient outcomes. Experimental Procedures: We evaluated the effect of dual CDK4/CDK6 inhibition on neuroblastoma viability using LEE011 (Novartis Oncology), a highly specific CDK4/6 inhibitor. Results: Treatment with LEE011 significantly reduced proliferation in 12 of 17 human neuroblastoma-derived cell lines by inducing cytostasis at nanomolar concentrations (mean IC50 = 307 ± 68 nmol/L in sensitive lines). LEE011 caused cell-cycle arrest and cellular senescence that was attributed to dose-dependent decreases in phosphorylated RB and FOXM1, respectively. In addition, responsiveness of neuroblastoma xenografts to LEE011 translated to the in vivo setting in that there was a direct correlation of in vitro IC50 values with degree of subcutaneous xenograft growth delay. Although our data indicate that neuroblastomas sensitive to LEE011 were more likely to contain genomic amplification of MYCN (P = 0.01), the identification of additional clinically accessible biomarkers is of high importance. Conclusions: Taken together, our data show that LEE011 is active in a large subset of neuroblastoma cell line and xenograft models, and supports the clinical development of this CDK4/6 inhibitor as a therapy for patients with this disease. Clin Cancer Res; 19(22); 6173–82. ©2013 AACR.


Nature Genetics | 2015

Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations

Thomas F. Eleveld; Derek A. Oldridge; Virginie Bernard; Jan Koster; Leo Colmet Daage; Sharon J. Diskin; Linda Schild; Nadia Bessoltane Bentahar; Angela Bellini; Mathieu Chicard; Eve Lapouble; Valérie Combaret; Patricia Legoix-Né; Jean Michon; Trevor J. Pugh; Lori S. Hart; JulieAnn Rader; Edward F. Attiyeh; Jun S. Wei; Shile Zhang; Arlene Naranjo; Julie M. Gastier-Foster; Michael D. Hogarty; Shahab Asgharzadeh; Malcolm A. Smith; Jaime M. Guidry Auvil; Thomas B. K. Watkins; Danny A. Zwijnenburg; Marli E. Ebus; Peter van Sluis

The majority of patients with neuroblastoma have tumors that initially respond to chemotherapy, but a large proportion will experience therapy-resistant relapses. The molecular basis of this aggressive phenotype is unknown. Whole-genome sequencing of 23 paired diagnostic and relapse neuroblastomas showed clonal evolution from the diagnostic tumor, with a median of 29 somatic mutations unique to the relapse sample. Eighteen of the 23 relapse tumors (78%) showed mutations predicted to activate the RAS-MAPK pathway. Seven of these events were detected only in the relapse tumor, whereas the others showed clonal enrichment. In neuroblastoma cell lines, we also detected a high frequency of activating mutations in the RAS-MAPK pathway (11/18; 61%), and these lesions predicted sensitivity to MEK inhibition in vitro and in vivo. Our findings provide a rationale for genetic characterization of relapse neuroblastomas and show that RAS-MAPK pathway mutations may function as a biomarker for new therapeutic approaches to refractory disease.


Cancer Biology & Therapy | 2007

Chemotherapy-resistant side-population of colon cancer cells has a higher sensitivity to TRAIL than the Non-SP, a higher expression of c-Myc and TRAIL-receptor DR4

Robyn T. Sussman; M. Stacey Ricci; Lori S. Hart; Shi-Yong Sun; Wafik S. El-Deiry

Cancer stem cells are resistant to chemotherapy and provide an important target for drug development. We found that, surprisingly, the dye-effluxing side population (SP) within SW480 human colon tumor cells, a population defined to possess stem cell characteristics, expresses a 10-fold higher level of pro-apoptotic TRAIL receptor DR4 as compared to non-SP cells. The TRAIL receptors are activated by the anti-tumor host immune system through the TRAIL ligand. SW480 SP-cells express similar levels of another TRAIL receptor (DR5), as non-SP cells. SP-cells from multiple tumorigenic human cell lines, which are most often resistant to chemotherapeutic agents such as etoposide, cisplatin and 5-FU, are more sensitive to TRAIL than non-SP cells. SP-cells express higher levels of c-Myc than non-SP cells which may explain their sensitivity to TRAIL. We have found c-Myc activates DR4 transcription through E-box DNA-response elements located in the DR4 promoter, thereby increasing the expression of cell-surface pro-apoptotic death receptors in TRAIL-resistant cell lines. TRAIL sensitivity of SP-cells may represent a safeguard against malignancy, and therefore, offers a therapeutic window and opportunity.


Cell Cycle | 2009

The p53 target Plk2 interacts with TSC proteins impacting mTOR signaling, tumor growth and chemosensitivity under hypoxic conditions

Elizabeth M. Matthew; Lori S. Hart; Aristotelis Astrinidis; Arunasalam Navaraj; Nathan G. Dolloff; David T. Dicker; Elizabeth P. Henske; Wafik S. El-Deiry

Tuberous sclerosis complex 1 (TSC1) inhibits mammalian target of rapamycin (mTOR), a central promotor of cell growth and proliferation. The protein product of the TSC1 gene, hamartin (referred to as TSC1) is known to interact with Polo-like kinase 1 (Plk1) in a cell cycle regulated, phosphorylation-dependent manner. We hypothesized that the p53 target gene, Plk2, is a tumor suppressor, mediating its tumor suppressor function through interactions with TSC1 that facilitate TSC1/2 restraint of mTOR under hypoxic stress. We found that human lung tumor cells deficient in Plk2 grew larger than control tumors, and that Plk2 interacts with endogenous TSC1 protein. Additionally, C-terminal Plk2-GST fusion protein bound both TSC1 and TSC2 proteins. TSC1 levels were elevated in response to Adriamycin and cells transiently over-expressing Plk2 demonstrated decreased phosphorylation of the downstream target of mTOR, ribosomal protein p70S6 kinase during hypoxia. Plk2 levels were inversely correlated with cytoplasmic p70S6K phosphorylation. Plk2 levels did not increase in response to DNA damage (Adriamycin, CPT-11) when HCT 116 and H460 cells were exposed to hypoxia. TSC1-deficient mouse embryonic fibroblasts with TSC1 added back demonstrated decreased S6K phosphorylation, which was further decreased when Plk2 was transiently over-expressed. Interestingly, under normoxia, Plk2 deficient tumor cells demonstrated increased apoptosis in response to various chemotherapeutic agents including CPT-11 but increased resistance to apoptotic death after CPT-11 treatment under hypoxia, and tumor xenografts comprised of these Plk2-deficient cells were resistant to CPT-11. Our results point to a novel Plk2-TSC1 interaction with effects on mTOR signaling during hypoxia, and tumor growth that may enable targeting Plk2 signaling in cancer therapy.


Journal of Clinical Oncology | 2008

Invincible, but Not Invisible: Imaging Approaches Toward In Vivo Detection of Cancer Stem Cells

Lori S. Hart; Wafik S. El-Deiry

With evidence emerging in support of a cancer stem-cell model of carcinogenesis, it is of paramount importance to identify and image these elusive cells in their natural environment. The cancer stem-cell hypothesis has the potential to explain unresolved questions of tumorigenesis, tumor heterogeneity, chemotherapeutic and radiation resistance, and even the metastatic phenotype. Intravital imaging of cancer stem cells could be of great value for determining prognosis, as well as monitoring therapeutic efficacy and influencing therapeutic protocols. Cancer stem cells represent a rare population of cells, as low as 0.1% of cells within a human tumor, and the phenotype of isolated cancer stem cells is easily altered when placed under in vitro conditions. This represents a challenge in studying cancer stem cells without manipulation or extraction from their natural environment. Advanced imaging techniques allow for the in vivo observation of physiological events at cellular resolution. Cancer stem-cell studies must take advantage of such technology to promote a better understanding of the cancer stem-cell model in relation to tumor growth and metastasis, as well as to potentially improve on the principles by which cancers are treated. This review examines the opportunities for in vivo imaging of putative cancer stem cells with regard to currently accepted cancer stem-cell characteristics and advanced imaging technologies.


Cell Cycle | 2007

Effects of low confluency, serum starvation and hypoxia on the side population of cancer cell lines.

Raluca T. Tavaluc; Lori S. Hart; David T. Dicker; Wafik S. El-Deiry

The cancer stem cell theory describes a small subset of cancer cells that have the ability to initiate and drive the growth of a tumor. The niche refers to the environmental factors and the surrounding cells within which the tumor develops. The exact relationship between cancer stem cells and the tumor niche is not known. However, using side population analysis by flow cytometry, it is possible to analyze the relationship between environmental stresses and putative cancer stem cells. The side population is a subpopulation of cells that efflux Hoechst 33342 and has been previously shown to be enriched for cancer stem cells. Using this technique, we characterized the response of side population cells to low confluency, serum starvation and hypoxia using three different human cancer cell lines. We found that these stresses, characteristic of the tumor niche enrich the side population of DLD1, SW480 and MCF7 cancer cell lines, thus possibly predisposing the tumor to a more malignant phenotype.


Cell Cycle | 2011

Human colon cancer stem cells are enriched by insulin-like growth factor-1 and are sensitive to figitumumab

Lori S. Hart; Nathan G. Dolloff; David T. Dicker; Constantinos Koumenis; James G. Christensen; Adda Grimberg; Wafik S. El-Deiry

Cancer stem cells (CSCs) are recognized as contributors to cancer progression and therapeutic resistance in liquid and solid malignancies. We analyzed a panel of human colon cancer cell lines for CSC populations by side population and aldehyde dehydrogenase activity. IGF-1 enriches these putative colon CSC populations in a β-catenin-dependent manner. Chemical inhibition of Akt depletes SP cells, and conversely, the overexpression of a constitutively active mutant version of Akt is sufficient to enrich CSC populations. CP-751,871, a fully human antibody with specificity to the IGF-1 receptor, is currently being tested in clinical trials for a variety of solid tumors. CP-751,871 reduces CSC populations in colon cancer cell lines in vitro and reduces tumor growth in vivo. We have identified a novel role for IGF-1 in the enrichment of chemo-resistant CSC populations. Our results suggest that CP-751,871 has preferential activity against putative CSC populations and, therefore, may complement current standard chemotherapeutic regimens that target cycling cells.

Collaboration


Dive into the Lori S. Hart's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John M. Maris

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

JulieAnn Rader

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Nathan G. Dolloff

Penn State Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Pichai Raman

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Andrew C. Wood

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Patrick A. Mayes

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge