Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luckshitha Suriyasena Liyanage is active.

Publication


Featured researches published by Luckshitha Suriyasena Liyanage.


Nature Communications | 2011

Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s

Yeohoon Yoon; Steve Park; Joon Hak Oh; Sanghyun Hong; Luckshitha Suriyasena Liyanage; Huiliang Wang; Satoshi Morishita; Nishant Patil; Young Jun Park; Jong Jin Park; Andrew J. Spakowitz; Giulia Galli; Francois Gygi; Philip H.-S. Wong; Jeffrey B.-H. Tok; Jong Min Kim; Zhenan Bao

Conjugated polymers, such as polyfluorene and poly(phenylene vinylene), have been used to selectively disperse semiconducting single-walled carbon nanotubes (sc-SWNTs), but these polymers have limited applications in transistors and solar cells. Regioregular poly(3-alkylthiophene)s (rr-P3ATs) are the most widely used materials for organic electronics and have been observed to wrap around SWNTs. However, no sorting of sc-SWNTs has been achieved before. Here we report the application of rr-P3ATs to sort sc-SWNTs. Through rational selection of polymers, solvent and temperature, we achieved highly selective dispersion of sc-SWNTs. Our approach enables direct film preparation after a simple centrifugation step. Using the sorted sc-SWNTs, we fabricate high-performance SWNT network transistors with observed charge-carrier mobility as high as 12 cm(2) V(-1) s(-1) and on/off ratio of >10(6). Our method offers a facile and a scalable route for separating sc-SWNTs and fabrication of electronic devices.


ACS Nano | 2014

Carbon Nanotube Circuit Integration up to Sub-20 nm Channel Lengths

Max M. Shulaker; Jelle Van Rethy; Tony F. Wu; Luckshitha Suriyasena Liyanage; Hai Wei; Zuanyi Li; Eric Pop; Georges Gielen; H.-S. Philip Wong; Subhasish Mitra

Carbon nanotube (CNT) field-effect transistors (CNFETs) are a promising emerging technology projected to achieve over an order of magnitude improvement in energy-delay product, a metric of performance and energy efficiency, compared to silicon-based circuits. However, due to substantial imperfections inherent with CNTs, the promise of CNFETs has yet to be fully realized. Techniques to overcome these imperfections have yielded promising results, but thus far only at large technology nodes (1 μm device size). Here we demonstrate the first very large scale integration (VLSI)-compatible approach to realizing CNFET digital circuits at highly scaled technology nodes, with devices ranging from 90 nm to sub-20 nm channel lengths. We demonstrate inverters functioning at 1 MHz and a fully integrated CNFET infrared light sensor and interface circuit at 32 nm channel length. This demonstrates the feasibility of realizing more complex CNFET circuits at highly scaled technology nodes.


ACS Nano | 2012

Wafer-scale fabrication and characterization of thin-film transistors with polythiophene-sorted semiconducting carbon nanotube networks.

Luckshitha Suriyasena Liyanage; Hangwoo Lee; Nishant Patil; Steve Park; Subhasish Mitra; Zhenan Bao; H.-S.P. Wong

Semiconducting single-walled carbon nanotubes (SWCNTs) have great potential of becoming the channel material for future thin-film transistor technology. However, an effective sorting technique is needed to obtain high-quality semiconducting SWCNTs for optimal device performance. In our previous work, we reported a dispersion technique for semiconducting SWCNTs that relies on regioregular poly(3-dodecylthiophene) (rr-P3DDT) to form hybrid nanostructures. In this study, we demonstrate the scalability of those sorted CNT composite structures to form arrays of TFTs using standard lithographic techniques. The robustness of these CNT nanostructures was tested with Raman spectroscopy and atomic force microscope images. Important trends in device properties were extracted by means of electrical measurements for different CNT concentrations and channel lengths (L(c)). A statistical study provided an average mobility of 1 cm(2)/V·s and I(on)/I(off) as high as 10(6) for short channel lengths (L(c) = 1.5 μm) with 100% yield. This highlights the effectiveness of this sorting technique and its scalability for large-scale, flexible, and transparent display applications.


Nano Letters | 2014

VLSI-Compatible Carbon Nanotube Doping Technique with Low Work-Function Metal Oxides

Luckshitha Suriyasena Liyanage; Xiaoqing Xu; Greg Pitner; Zhenan Bao; H.-S. Philip Wong

Single-wall carbon nanotubes (SWCNTs) have great potential to become the channel material for future high-speed transistor technology. However, as-made carbon nanotube field effect transistors (CNFETs) are p-type in ambient, and a consistent and reproducible n-type carbon nanotube (CNT) doping technique has yet to be realized. In addition, for very large scale integration (VLSI) of CNT transistors, it is imperative to use a solid-state method that can be applied on the wafer scale. Herein we present a novel, VLSI-compatible doping technique to fabricate n-type CNT transistors using low work-function metal oxides as gate dielectrics. Using this technique we demonstrate wafer-scale, aligned CNT transistors with yttrium oxide (Y2Ox) gate dielectrics that exhibit n-type behavior with Ion/Ioff of 10(6) and inverse subthreshold slope of 95 mV/dec. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) analyses confirm that slow (∼1 Å/s) evaporation of yttrium on the CNTs can form a smooth surface that provides excellent wetting to CNTs. Further analysis of the yttrium oxide gate dielectric using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) techniques revealed that partially oxidized elemental yttrium content increases underneath the surface where it acts as a reducing agent on nanotubes by donating electrons that gives rise to n-type doping in CNTs. We further confirm the mechanism for this technique with other low work-function metals such as lanthanum (La), erbium (Er), and scandium (Sc) which also provide similar CNT NFET behavior after transistor fabrication. This study paves the way to exploiting a wide range of materials for an effective n-type carbon nanotube transistor for a complementary (p- and n-type) transistor technology.


international electron devices meeting | 2011

Carbon nanotube electronics - Materials, devices, circuits, design, modeling, and performance projection

H.-S. Philip Wong; Subhasish Mitra; Deji Akinwande; Cara Beasley; Yang Chai; Hong-Yu Chen; Xiangyu Chen; G.F. Close; Jie Deng; Arash Hazeghi; Jiale Liang; Albert Lin; Luckshitha Suriyasena Liyanage; Jieying Luo; Jason Parker; Nishant Patil; Max M. Shulaker; Hai Wei; Lan Wei; Jie Zhang

Three key advances in device technology must be made to realize the potential of carbon nanotube transistors: (1) aligned CNT density of ≥200 CNT/µm on a wafer scale, (2) stable p- and n-type doping on the same wafer with control over the doping level, (3) low resistance metal to CNT contact at short (<20 nm) contact length. CNFET technology has now advanced to a point where large scale circuit level demonstration can be contemplated. This is made possible by advances in wafer-scale CNT growth, multiple CNT transfer, and imperfection-immune design techniques to overcome mis-positioned CNTs [11] and m-CNTs (e.g. VMR [18–19] and ACCNT [27]). In order to minimize CNT-specific variations (e.g. CNT count variations [45]), circuit design techniques co-optimized with process technology will play an important role. In the near future, CNFET circuit performance demonstration at GHz clock speed with the requisite device density is expected.


IEEE Transactions on Electron Devices | 2015

1D Selection Device Using Carbon Nanotube FETs for High-Density Cross-Point Memory Arrays

Chiyui Ahn; Zizhen Jiang; Chi-Shuen Lee; Hong-Yu Chen; Jiale Liang; Luckshitha Suriyasena Liyanage; H.-S. Philip Wong

A novel one-transistor-n-resistors (1TnR) array architecture is demonstrated as a cost-effective solution to the sneak path problem in large-scale cross-point memory arrays. In a 1TnR array, a single transistor (1T) with a 1D channel effectively controls a number of resistive switching nonvolatile memory (NVM) cells (nR) while limiting the sneak leakage current within the 1D channel without sacrificing the device density. To maximize these benefits, a carbon nanotube FET (CNFET) is employed as the 1D selection device, due to its near-ballistic electrical transport properties even at a small device width. Experimental demonstrations of the CNFET-based 1TnR concept are presented with two promising resistive switching NVM candidates: 1) resistive random access memory (RRAM) and 2) phase-change memory (PCM). Here, we report that the integrated bipolar Al2O3-based RRAM consumes programming energies as low as 0.1-7 pJ per bit and has a high programming endurance of up to 106 cycles. The 1TnR RRAM cell also has self-compliance characteristics, because the semiconducting carbon nanotube (CNT) that serves as the bottom electrode limits the device current. The unipolar PCM cells integrated with CNFETs show uniform electrical characteristics with high ON-/OFF-resistance ratios of >10. Owing to the extremely small contact area between the phase change material, Ge2Sb2Te5, and the CNT, remarkably low programming currents of <;1 μA are achieved.


ACS Nano | 2016

Hysteresis in Carbon Nanotube Transistors: Measurement and Analysis of Trap Density, Energy Level, and Spatial Distribution.

Rebecca S. Park; Max M. Shulaker; Gage Hills; Luckshitha Suriyasena Liyanage; Seunghyun Lee; Alvin Tang; Subhasish Mitra; H.-S. Philip Wong

We present a measurement technique, which we call the Pulsed Time-Domain Measurement, for characterizing hysteresis in carbon nanotube field-effect transistors, and demonstrate its applicability for a broad range of 1D and 2D nanomaterials beyond carbon nanotubes. The Pulsed Time-Domain Measurement enables the quantification (density, energy level, and spatial distribution) of charged traps responsible for hysteresis. A physics-based model of the charge trapping process for a carbon nanotube field-effect transistor is presented and experimentally validated using the Pulsed Time-Domain Measurement. Leveraging this model, we discover a source of traps (surface traps) unique to devices with low-dimensional channels such as carbon nanotubes and nanowires (beyond interface traps which exist in todays silicon field-effect transistors). The different charge trapping mechanisms for interface traps and surface traps are studied based on their temperature dependencies. Through these advances, we are able to quantify the interface trap density for carbon nanotube field-effect transistors (∼3 × 10(13) cm(-2) eV(-1) near midgap), and compare this against a range of previously studied dielectric/semiconductor interfaces.


international electron devices meeting | 2011

Air-stable technique for fabricating n-type carbon nanotube FETs

Hai Wei; Hong-Yu Chen; Luckshitha Suriyasena Liyanage; H.-S. Philip Wong; Subhasish Mitra

We present the electrical characteristics of air-stable n-type CNFETs, fabricated using a silicon technology compatible fabrication process. Both n-type FETs and p-type FETs have been fabricated on the same wafer. With previously-published methods for scalable removal of m-CNTs, we demonstrated the complementary CNFET inverters as well as a 2-stage inverter chain using n-type CNFETs only.


design, automation, and test in europe | 2013

Carbon nanotube circuits: opportunities and challenges

Hai Wei; Max M. Shulaker; Gage Hills; Hong-Yu Chen; Chi-Shuen Lee; Luckshitha Suriyasena Liyanage; Jie Zhang; H.-S. Philip Wong; Subhasish Mitra

Carbon Nanotube Field-Effect Transistors (CNFETs) are excellent candidates for building highly energy-efficient digital systems. However, imperfections inherent in carbon nanotubes (CNTs) pose significant hurdles to realizing practical CNFET circuits. In order to achieve CNFET VLSI systems in the presence of these inherent imperfections, careful orchestration of design and processing is required: from device processing and circuit integration, all the way to large-scale system design and optimization. In this paper, we summarize the key ideas that enabled the first experimental demonstration of CNFET arithmetic and storage elements. We also present an overview of a probabilistic framework to analyze the impact of various CNFET circuit design techniques and CNT processing options on system-level energy and delay metrics. We demonstrate how this framework can be used to improve the energy-delay-product (EDP) of CNFET-based digital systems.


symposium on vlsi technology | 2014

A 1TnR array architecture using a one-dimensional selection device

Chiyui Ahn; Zizhen Jiang; Chi-Shuen Lee; Hong-Yu Chen; Jiale Liang; Luckshitha Suriyasena Liyanage; H.-S. Philip Wong

Phase-change memory (PCM) cells on a single carbon nanotube field-effect transistor (CNFET) are demonstrated toward the realization of the 1TnR array architecture. The use of CNFET as one-dimensional selector, which exhibits ultra-low leakage (<; 1 pA) and large ON/OFF ratio (> 106) at high current densities, enables the cost-effective PCM cell to operate with a wide voltage margin in large 2D arrays. Uniform electrical characteristics of PCM cells over 100 cycles are obtained with the ON/OFF ratio of ~ 100 and the low SET/RESET currents of <; 1 μA.

Collaboration


Dive into the Luckshitha Suriyasena Liyanage's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge