Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lynda D. Lane is active.

Publication


Featured researches published by Lynda D. Lane.


Circulation | 1991

Left ventricular pressure-volume and Frank-Starling relations in endurance athletes. Implications for orthostatic tolerance and exercise performance.

Benjamin D. Levine; Lynda D. Lane; Jay C. Buckey; D. B. Friedman; C. G. Blomqvist

BackgroundEndurance athletes have a high incidence of orthostatic intolerance. We hypothesized that this is related to an abnormally large decrease in left ventricular enddiastolic volume (LVEDV) and stroke volume (SV) for any given decrease in filling pressure. Methods and ResultsWe measured pulmonary capillary wedge (PCW) pressure (Swan-Ganz catheter), LVEDV (two-dimensional echocardiography), and cardiac output (C2H2 rebreathing) during lower body negative pressure (LBNP, −15 and −30 mm Hg) and rapid saline infusion (15 and 30 ml/kg) in seven athletes and six controls (V˙o2max, 68 ± 7 and 41 ± 4 ml/kg/min). Orthostatic tolerance was determined by progressive LBNP to presyncope. Athletes had steeper slopes of their SV/PCW pressure curves than nonathletes (5.5 + 2.7 versus 2.7 + 1.5 mI/mm Hg, p < 0.05). The slope of the steep, linear portion of this curve correlated significantly with the duration of LBNP tolerance (r = 0.58, p = 0.04). The athletes also had reduced chamber stiffness (increased chamber compliance) expressed as the slope (k) of the dP/dV versus P relation (chamber stiffness, k = 0.008 ± 0.004 versus 0.031 ± 0.004, p < 0.005; chamber compliance, l/k = 449.8 + 283.8 versus 35.3 ± 4.3). This resulted in larger absolute and relative changes in end-diastolic volume over an equivalent range of filling pressures. ConclusionsEndurance athletes have greater ventricular diastolic chamber compliance and distensibility than nonathletes and thus operate on the steep portion of their Starling curve. This may be a mechanical, nonautonomic cause of orthostatic intolerance.


Circulation | 1994

Cerebral versus systemic hemodynamics during graded orthostatic stress in humans.

Benjamin D. Levine; Cole A. Giller; Lynda D. Lane; Jay C. Buckey; C. G. Blomqvist

Orthostatic syncope is usually attributed to cerebral hypoperfusion secondary to systemic hemodynamic collapse. Recent research in patients with neurocardiogenic syncope has suggested that cerebral vasoconstriction may occur during orthostatic hypotension, compromising cerebral autoregulation and possibly contributing to the loss of consciousness. However, the regulation of cerebral blood flow (CBF) in such patients may be quite different from that of healthy individuals, particularly when assessed during the rapidly changing hemodynamic conditions associated with neurocardiogenic syncope. To be able to interpret the pathophysiological significance of these observations, a clear understanding of the normal responses of the cerebral circulation to orthostatic stress must be obtained, particularly in the context of the known changes in systemic and regional distributions of blood flow and vascular resistance during orthostasis. Therefore, the specific aim of this study was to examine the changes that occur in the cerebral circulation during graded reductions in central blood volume in the absence of systemic hypotension in healthy humans. We hypothesized that cerebral vasoconstriction would occur and CBF would decrease due to activation of the sympathetic nervous system. We further hypothesized, however, that the magnitude of this change would be small compared with changes in systemic or skeletal muscle vascular resistance in healthy subjects with intact autoregulation and would be unlikely to cause syncope without concomitant hypotension. Methods and ResultsTo test this hypothesis, we studied 13 healthy men (age, 27±7 years) during progressive lower body negative pressure (LBNP). We measured systemic flow (Qc is cardiac output; C2H2 rebreathing), regional forearm flow (FBF; venous occlusion plethysmography), and blood pressure (BP; Finapres) and calculated systemic (SVR) and forearm (FVR) vascular resistances. Changes in brain blood flow were estimated from changes in the blood flow velocity in the middle cerebral artery (VMcA) using transcranial Doppler. Pulsatility (systolic minus diastolic/mean velocity) normalized for systemic arterial pressure pulsatility was used as an index of distal cerebral vascular resistance. End-tidal PACO2 was closely monitored during LBNP. From rest to maximal LBNP before the onset of symptoms or systemic hypotension, Qc and FBF decreased by 29.9% and 34.4%, respectively. VMCA decreased less, by 15.5% consistent with a smaller decrease in CBF. Similarly, SVR and FVR increased by 62.8% and 69.8%, respectively, whereas pulsatility increased by 17.2%, suggestive of a mild degree of small-vessel cerebral vasoconstriction. Seven of 13 subjects had presyncope during LBNP, all associated with a sudden drop in BP (29±9%). By comparison, hyperventilation alone caused greater changes in VMCA (42±2%) and pulsatility but never caused presyncope. In a separate group of 3 subjects, superimposition of hyperventilation during highlevel LBNP caused a further decrease in VMCA (31±7%) but no change in BP or level of consciousness. ConclusionsWe conclude that cerebral vasoconstriction occurs in healthy humans during graded reductions in central blood volume caused by LBNP. However, the magnitude of this response is small compared with changes in SVR or FVR during LBNP or other stimuli known to induce cerebral vasoconstriction (hypocapnia). We speculate that this degree of cerebral vasoconstriction is not by itself sufficient to cause syncope during orthostatic stress. However, it may exacerbate the decrease in CBF associated with hypotension if hemodynamic instability develops.


The Journal of Physiology | 2002

Human muscle sympathetic neural and haemodynamic responses to tilt following spaceflight

Benjamin D. Levine; James A. Pawelczyk; Andrew C. Ertl; James F. Cox; Julie H. Zuckerman; André Diedrich; Italo Biaggioni; Chester A. Ray; Michael L. Smith; Satoshi Iwase; Mitsuru Saito; Yoshiki Sugiyama; Tadaaki Mano; Rong Zhang; Ken-ichi Iwasaki; Lynda D. Lane; Jay C. Buckey; William H. Cooke; Friedhelm J. Baisch; David Robertson; C. Gunnar Blomqvist

Orthostatic intolerance is common when astronauts return to Earth: after brief spaceflight, up to two‐thirds are unable to remain standing for 10 min. Previous research suggests that susceptible individuals are unable to increase their systemic vascular resistance and plasma noradrenaline concentrations above pre‐flight upright levels. In this study, we tested the hypothesis that adaptation to the microgravity of space impairs sympathetic neural responses to upright posture on Earth. We studied six astronauts ∼72 and 23 days before and on landing day after the 16 day Neurolab space shuttle mission. We measured heart rate, arterial pressure and cardiac output, and calculated stroke volume and total peripheral resistance, during supine rest and 10 min of 60 deg upright tilt. Muscle sympathetic nerve activity was recorded in five subjects, as a direct measure of sympathetic nervous system responses. As in previous studies, mean (±s.e.m.) stroke volume was lower (46 ± 5 vs. 76 ± 3 ml, P= 0.017) and heart rate was higher (93 ± 1 vs. 74 ± 4 beats min−1, P= 0.002) during tilt after spaceflight than before spaceflight. Total peripheral resistance during tilt post flight was higher in some, but not all astronauts (1674 ± 256 vs. 1372 ± 62 dynes s cm−5, P= 0.32). No crew member exhibited orthostatic hypotension or presyncopal symptoms during the 10 min of postflight tilting. Muscle sympathetic nerve activity was higher post flight in all subjects, in supine (27 ± 4 vs. 17 ± 2 bursts min−1, P= 0.04) and tilted (46 ± 4 vs. 38 ± 3 bursts min−1, P= 0.01) positions. A strong (r2= 0.91–1.00) linear correlation between left ventricular stroke volume and muscle sympathetic nerve activity suggested that sympathetic responses were appropriate for the haemodynamic challenge of upright tilt and were unaffected by spaceflight. We conclude that after 16 days of spaceflight, muscle sympathetic nerve responses to upright tilt are normal.


The Journal of Physiology | 2002

Human muscle sympathetic nerve activity and plasma noradrenaline kinetics in space

Andrew C. Ertl; André Diedrich; Italo Biaggioni; Benjamin D. Levine; Rose Marie Robertson; James F. Cox; Julie H. Zuckerman; James A. Pawelczyk; Chester A. Ray; Jay C. Buckey; Lynda D. Lane; Richard Shiavi; F. Andrew Gaffney; Fernando Costa; Carol Holt; C. Gunnar Blomqvist; Friedhelm J. Baisch; David Robertson

Astronauts returning from space have reduced red blood cell masses, hypovolaemia and orthostatic intolerance, marked by greater cardio–acceleration during standing than before spaceflight, and in some, orthostatic hypotension and presyncope. Adaptation of the sympathetic nervous system occurring during spaceflight may be responsible for these postflight alterations. We tested the hypotheses that exposure to microgravity reduces sympathetic neural outflow and impairs sympathetic neural responses to orthostatic stress. We measured heart rate, photoplethysmographic finger arterial pressure, peroneal nerve muscle sympathetic activity and plasma noradrenaline spillover and clearance, in male astronauts before, during (flight day 12 or 13) and after the 16 day Neurolab space shuttle mission. Measurements were made during supine rest and orthostatic stress, as simulated on Earth and in space by 7 min periods of 15 and 30 mmHg lower body suction. Mean (±s.e.m.) heart rates before lower body suction were similar pre–flight and in flight. Heart rate responses to −30 mmHg were greater in flight (from 56 ± 4 to 72 ± 4 beats min−1) than pre–flight (from 56 ± 4 at rest to 62 ± 4 beats min−1, P < 0.05). Noradrenaline spillover and clearance were increased from pre–flight levels during baseline periods and during lower body suction, both in flight (n= 3) and on post–flight days 1 or 2 (n= 5, P < 0.05). In–flight baseline sympathetic nerve activity was increased above pre–flight levels (by 10–33 %) in the same three subjects in whom noradrenaline spillover and clearance were increased. The sympathetic response to 30 mmHg lower body suction was at pre–flight levels or higher in each subject (35 pre–flight vs. 40 bursts min−1 in flight). No astronaut experienced presyncope during lower body suction in space (or during upright tilt following the Neurolab mission). We conclude that in space, baseline sympathetic neural outflow is increased moderately and sympathetic responses to lower body suction are exaggerated. Therefore, notwithstanding hypovolaemia, astronauts respond normally to simulated orthostatic stress and are able to maintain their arterial pressures at normal levels.


The Journal of Physiology | 2002

Cardiovascular and sympathetic neural responses to handgrip and cold pressor stimuli in humans before, during and after spaceflight

Qi Fu; Benjamin D. Levine; James A. Pawelczyk; Andrew C. Ertl; André Diedrich; James F. Cox; Julie H. Zuckerman; Chester A. Ray; Michael L. Smith; Satoshi Iwase; Mitsuru Saito; Yoshiki Sugiyama; Tadaaki Mano; Rong Zhang; Ken-ichi Iwasaki; Lynda D. Lane; Jay C. Buckey; William H. Cooke; Rose Marie Robertson; Friedhelm J. Baisch; C. Gunnar Blomqvist; David Robertson; Italo Biaggioni

Astronauts returning to Earth have reduced orthostatic tolerance and exercise capacity. Alterations in autonomic nervous system and neuromuscular function after spaceflight might contribute to this problem. In this study, we tested the hypothesis that exposure to microgravity impairs autonomic neural control of sympathetic outflow in response to peripheral afferent stimulation produced by handgrip and a cold pressor test in humans. We studied five astronauts ≈72 and 23 days before, and on landing day after the 16 day Neurolab (STS‐90) space shuttle mission, and four of the astronauts during flight (day 12 or 13). Heart rate, arterial pressure and peroneal muscle sympathetic nerve activity (MSNA) were recorded before and during static handgrip sustained to fatigue at 40 % of maximum voluntary contraction, followed by 2 min of circulatory arrest pre‐, in‐ and post‐flight. The cold pressor test was applied only before (five astronauts) and during flight (day 12 or 13, four astronauts). Mean (±s.e.m.) baseline heart rates and arterial pressures were similar among pre‐, in‐ and post‐flight measurements. At the same relative fatiguing force, the peak systolic pressure and mean arterial pressure during static handgrip were not different before, during and after spaceflight. The peak diastolic pressure tended to be higher post‐ than pre‐flight (112 ± 6 vs. 99 ± 5 mmHg, P= 0.088). Contraction‐induced rises in heart rate were similar pre‐, in‐ and post‐flight. MSNA was higher post‐flight in all subjects before static handgrip (26 ± 4 post‐ vs. 15 ± 4 bursts min−1 pre‐flight, P= 0.017). Contraction‐evoked peak MSNA responses were not different before, during, and after spaceflight (41 ± 4, 38 ± 5 and 46 ± 6 bursts min−1, all P > 0.05). MSNA during post‐handgrip circulatory arrest was higher post‐ than pre‐ or in‐flight (41 ± 1 vs. 33 ± 3 and 30 ± 5 bursts min−1, P= 0.038 and 0.036). Similarly, responses of MSNA and blood pressure to the cold pressor test were well maintained in‐flight. We conclude that modulation of muscle sympathetic neural outflow by muscle metaboreceptors and skin nociceptors is preserved during short duration spaceflight.


The Journal of Physiology | 2002

Influence of microgravity on astronauts' sympathetic and vagal responses to Valsalva's manoeuvre

James F. Cox; Kari U. O. Tahvanainen; Tom Kuusela; Benjamin D. Levine; William H. Cooke; Tadaaki Mano; Satoshi Iwase; Mitsuru Saito; Yoshiki Sugiyama; Andrew C. Ertl; Italo Biaggioni; André Diedrich; Rose Marie Robertson; Julie H. Zuckerman; Lynda D. Lane; Chester A. Ray; Ronald J. White; James A. Pawelczyk; Jay C. Buckey; Friedhelm J. Baisch; C. Gunnar Bomqvist; David Robertson

When astronauts return to Earth and stand, their heart rates may speed inordinately, their blood pressures may fall, and some may experience frank syncope. We studied brief autonomic and haemodynamic transients provoked by graded Valsalva manoeuvres in astronauts on Earth and in space, and tested the hypothesis that exposure to microgravity impairs sympathetic as well as vagal baroreflex responses. We recorded the electrocardiogram, finger photoplethysmographic arterial pressure, respiration and peroneal nerve muscle sympathetic activity in four healthy male astronauts (aged 38–44 years) before, during and after the 16 day Neurolab space shuttle mission. Astronauts performed two 15 s Valsalva manoeuvres at each pressure, 15 and 30 mmHg, in random order. Although no astronaut experienced presyncope after the mission, microgravity provoked major changes. For example, the average systolic pressure reduction during 30 mmHg straining was 27 mmHg pre‐flight and 49 mmHg in flight. Increases in muscle sympathetic nerve activity during straining were also much greater in space than on Earth. For example, mean normalized sympathetic activity increased 445 % during 30 mmHg straining on earth and 792 % in space. However, sympathetic baroreflex gain, taken as the integrated sympathetic response divided by the maximum diastolic pressure reduction during straining, was the same in space and on Earth. In contrast, vagal baroreflex gain, particularly during arterial pressure reductions, was diminished in space. This and earlier research suggest that exposure of healthy humans to microgravity augments arterial pressure and sympathetic responses to Valsalva straining and differentially reduces vagal, but not sympathetic baroreflex gain.


The Journal of Physiology | 2007

Human cerebral autoregulation before, during and after spaceflight

Ken-ichi Iwasaki; Benjamin D. Levine; Rong Zhang; Julie H. Zuckerman; James A. Pawelczyk; André Diedrich; Andrew C. Ertl; James F. Cox; William H. Cooke; Cole A. Giller; Chester A. Ray; Lynda D. Lane; Jay C. Buckey; Friedhelm J. Baisch; Dwain L. Eckberg; David Robertson; Italo Biaggioni; C. Gunnar Blomqvist

Exposure to microgravity alters the distribution of body fluids and the degree of distension of cranial blood vessels, and these changes in turn may provoke structural remodelling and altered cerebral autoregulation. Impaired cerebral autoregulation has been documented following weightlessness simulated by head‐down bed rest in humans, and is proposed as a mechanism responsible for postspaceflight orthostatic intolerance. In this study, we tested the hypothesis that spaceflight impairs cerebral autoregulation. We studied six astronauts ∼72 and 23 days before, after 1 and 2 weeks in space (n= 4), on landing day, and 1 day after the 16 day Neurolab space shuttle mission. Beat‐by‐beat changes of photoplethysmographic mean arterial pressure and transcranial Doppler middle cerebral artery blood flow velocity were measured during 5 min of spontaneous breathing, 30 mmHg lower body suction to simulate standing in space, and 10 min of 60 deg passive upright tilt on Earth. Dynamic cerebral autoregulation was quantified by analysis of the transfer function between spontaneous changes of mean arterial pressure and cerebral artery blood flow velocity, in the very low‐ (0.02–0.07 Hz), low‐ (0.07–0.20 Hz) and high‐frequency (0.20–0.35 Hz) ranges. Resting middle cerebral artery blood flow velocity did not change significantly from preflight values during or after spaceflight. Reductions of cerebral blood flow velocity during lower body suction were significant before spaceflight (P < 0.05, repeated measures ANOVA), but not during or after spaceflight. Absolute and percentage reductions of mean (±s.e.m.) cerebral blood flow velocity after 10 min upright tilt were smaller after than before spaceflight (absolute, −4 ± 3 cm s−1 after versus−14 ± 3 cm s−1 before, P= 0.001; and percentage, −8.0 ± 4.8% after versus−24.8 ± 4.4% before, P < 0.05), consistent with improved rather than impaired cerebral blood flow regulation. Low‐frequency gain decreased significantly (P < 0.05) by 26, 23 and 27% after 1 and 2 weeks in space and on landing day, respectively, compared with preflight values, which is also consistent with improved autoregulation. We conclude that human cerebral autoregulation is preserved, and possibly even improved, by short‐duration spaceflight.


The New England Journal of Medicine | 1993

Central venous pressure in space.

Jay C. Buckey; F. A. Gaffney; Lynda D. Lane; Benjamin D. Levine; Donald E. Watenpaugh; C. G. Blomqvist

Gravity affects cardiac filling pressure and intravascular fluid distribution significantly. A major central fluid shift occurs when all hydrostatic gradients are abolished on entry into microgravity (microG). Understanding the dynamics of this shift requires continuous monitoring of cardiac filling pressure; central venous pressure (CVP) measurement is the only feasible means of accomplishing this. We directly measured CVP in three subjects: one aboard the Spacelab Life Sciences-1 space shuttle flight and two aboard the Spacelab Life Sciences-2 space shuttle flight. Continuous CVP measurements, with a 4-Fr catheter, began 4 h before launch and continued into microG. Mean CVP was 8.4 cmH2O seated before flight, 15.0 cmH2O in the supine legs-elevated posture in the shuttle, and 2.5 cmH2O after 10 min in microG. Although CVP decreased, the left ventricular end-diastolic dimension measured by echocardiography increased from a mean of 4.60 cm supine preflight to 4.97 cm within 48 h in microG. These data are consistent with increased cardiac filling early in microG despite a fall in CVP, suggesting that the relationship between CVP and actual transmural left ventricular filling pressure is altered in microG.


Journal of the American Medical Informatics Association | 2005

Clinical Research Subject Recruitment: The Volunteer for Vanderbilt Research Program www.volunteer.mc.vanderbilt.edu

Paul A. Harris; Lynda D. Lane; Italo Biaggioni

This article provides information concerning a novel research subject recruitment registry developed at Vanderbilt University. Project goals were (1) to provide a mechanism for lay individuals to self-enter information conveying interest in volunteering for clinical research and (2) provide tools for researchers to select and contact potential volunteers based on study-specific inclusion criteria. The registry was built and offered as an institutional resource to all university scientists conducting institutional review board-approved research. The authors present (1) a model for redesigning workflow associated with subject registration, volunteer retrieval, and subject contact; (2) details of a Web-based software application used as a focal point in designing workflow for our system; (3) descriptive statistics for volunteer and researcher use of the system during the first 32 months of operation; (4) cost estimates for the project; and (5) a set of recommendations for other medical centers wishing to adopt similar methodology.


Journal of Cardiovascular Pharmacology | 1995

Pharmacologic Atrial Natriuretic Peptide Reduces Human Leg Capillary Filtration

Donald E. Watenpaugh; S F Vissing; Lynda D. Lane; Jay C. Buckey; Brian G. Firth; William Erdman; Alan R. Hargens; C. Gunnar Blomqvist

Summary: Atrial natriuretic peptide (ANP) is produced and secreted by atrial cells. We measured calf capillary filtration rate with prolonged venous-occlusion plethysmography of supine healthy male subjects during pharmacologic infusion of ANP (48 pmol/kg/min for 15 min; n = 6) and during placebo infusion (n = 7). Results during infusions were compared to prior control measurements. ANP infusion increased plasma [ANP] from 30 × 4 to 2,568 × 595 pmol/L. Systemic hemoconcentration occurred during ANP infusion: mean hematocrit and plasma colloid osmotic pressure increased 4.6 and 11.3%, respectively, relative to preinfusion baseline values (p < 0.05). Mean calf filtration, however, was significantly reduced from 0.15 to 0.08 ml/100 ml/min with ANP. Heart rate increased 20% with ANP infusion, whereas blood pressure was unchanged. Calf conductance (blood flow/ arterial pressure) and venous compliance were unaffected by ANP infusion. Placebo infusion had no effect relative to prior baseline control measurements. Although ANP induced systemic capillary filtration, in the calf, filtration was reduced with ANP. Therefore, pharmacologic ANP infusion enhances capillary filtration from the systemic circulation, perhaps at upper body or splanchnic sites or both, while having the opposite effect in the leg.

Collaboration


Dive into the Lynda D. Lane's collaboration.

Top Co-Authors

Avatar

Benjamin D. Levine

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jay C. Buckey

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

C. Gunnar Blomqvist

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. G. Blomqvist

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James A. Pawelczyk

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge