M.J. Freund-Mercier
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M.J. Freund-Mercier.
The Journal of Comparative Neurology | 2009
Jennifer Kaufling; Pierre Veinante; Sophie A. Pawlowski; M.J. Freund-Mercier; Michel Barrot
We previously showed that chronic psychostimulant exposure induces the transcription factor DeltaFosB in γ‐aminobutyric acid (GABA)ergic neurons of the caudal tier of the ventral tegmental area (VTA). This subregion was defined as the tail of the VTA (tVTA). In the present study, we showed that tVTA can also be visualized by analyzing FosB/DeltaFosB response following acute cocaine injection. This induction occurs in GABAergic neurons, as identified by glutamic acid decarboxylase (GAD) expression. To characterize tVTA further, we mapped its inputs by using the retrograde tracers Fluoro‐Gold or cholera toxin B subunit. Retrogradely labeled neurons were observed in the medial prefrontal cortex, the lateral septum, the ventral pallidum, the bed nucleus of the stria terminalis, the substantia innominata, the medial and lateral preoptic areas, the lateral and dorsal hypothalamic areas, the lateral habenula, the intermediate layers of the superior colliculus, the dorsal raphe, the periaqueductal gray, and the mesencephalic and pontine reticular formation. Projections from the prefrontal cortex, the hypothalamus, and the lateral habenula to the tVTA were also shown by using the anterograde tracer biotinylated dextran amine (BDA). We showed that the central nucleus of the amygdala innervates the anterior extent of the VTA but not the tVTA. Moreover, the tVTA mainly receives non‐aminergic inputs from the dorsal raphe and the locus coeruleus. Although the tVTA has a low density of dopaminergic neurons, its afferents are mostly similar to those targeting the rest of the VTA. This suggests that the tVTA can be considered as a VTA subregion despite its caudal location. J. Comp. Neurol. 513:597–621, 2009.
The Journal of Comparative Neurology | 1997
Pierre Veinante; M.J. Freund-Mercier
Radioligand receptor autoradiography has shown that oxytocin‐ and vasopressin‐binding sites exist in numerous rat brain regions, among which the amygdala and the bed nucleus of the stria terminalis (BST) are especially prominent. However, these descriptions did not take into account the numerous subdivisions of the amygdala and the BST. Thus, we have reinvestigated the distribution of these sites in the rat extended amygdala, which is formed by a continuum of structures stretching from the BST to the centromedial amygdala, including parts of the accumbens nucleus, substantia innominata, and transition areas between the amygdala and the striatum. For this purpose, histoautoradiography was used to detect binding sites at the cellular level, and anatomical boundaries were defined on the basis of acetylcholinesterase histochemistry and tyrosine‐hydroxylase immunohistochemistry. Oxytocin‐ and vasopressin‐binding sites were detected in well‐defined subdivisions of both medial and central parts of the extended amygdala, but they almost never coexisted in the same region. Compared with previously reported distributions, our reinvestigation describes novel oxytocin‐ and vasopressin‐binding sites in the lateral and supracapsular BST, in the sublenticular extended amygdala, in the interstitial nucleus of the posterior limb of the anterior commissure, in the marginal zone, in the central amygdaloid nucleus, and in the anterior amygdaloid area. These results indicate that oxytocin‐ and vasopressin‐binding sites represent an important feature of the extended amygdala and may participate in the large variety of functions that characterize this area, including reproductive and ingestive behaviors, conditioned fear and autonomic regulation. J. Comp. Neurol. 383:305‐325, 1997.
The Journal of Physiology | 1994
M.J. Freund-Mercier; M. E. Stoeckel; M J Klein
1. The purpose of the present study was the detection at the cellular scale of the oxytocin (OT) receptors involved in the facilitatory effect of this neuropeptide on its own release during the milk ejection reflex. 2. OT binding sites were demonstrated in brain sections by using a highly selective 125I‐labelled OT antagonist detected by film‐ and histoautoradiography. 3. Film autoradiographs revealed the presence of OT binding sites in the hypothalamic magnocellular (supraoptic, paraventricular and anterior commissural) nuclei in lactating rats, suckled or not. This detection was only possible after acute i.c.v. injection of OT antagonist which probably induced an upregulation of the OT binding sites to autoradiographically detectable levels. 4. Combined application of histoautoradiographic and immunohistochemical techniques showed that the OT binding sites were concentrated on OT magnocellular neurones. Labelling concerned cell bodies and dendrites but not the axons and endings in the pituitary neural lobe. 5. The presently detected somatodendritic autoreceptors on OT neurones probably mediate the facilitatory effect of OT on its own release during the milk ejection reflex.
Neuroscience | 2005
S. Uhl-Bronner; E. Waltisperger; G. Martínez-Lorenzana; M. Condes Lara; M.J. Freund-Mercier
The central actions of oxytocin on reproduction-related functions and behaviors are strongly steroid-dependent and gender specific. This study characterizes sexual differences in the oxytocin binding site expression in forebrain and spinal cord of the rat. Using film autoradiography, we quantified the density of oxytocin binding sites in the ventromedial hypothalamic nucleus, the medial and central nuclei of the amygdala, the medial bed nucleus of the stria terminalis and the spinal cord dorsal horns both in adult male and female rats, and during development. In addition, neonatal castrated males and intact neonatal females treated with a single injection of testosterone (1 mg) were examined. Data showed a sexual dimorphism in the expression of oxytocin binding sites in the spinal cord dorsal horns and in restricted areas of the forebrain that are sensitive to gonadal steroids such as the ventromedial hypothalamic nucleus, but not in gonadal steroid insensitive sites such as the central nucleus of the amygdala. Adult males had higher oxytocin binding site densities in the ventromedial hypothalamic nucleus and dorsal horns than females. In the forebrain, but not in the dorsal horn, this sexual difference required a perinatal exposure to testosterone. Neonatal castration only abolished the sexual difference in the ventromedial hypothalamic nucleus of adults, but not in the dorsal horn. Furthermore, females that received a single injection of testosterone 1 day after birth showed significant increases in the density of oxytocin binding sites in the ventromedial hypothalamic nucleus, medial nucleus of the amygdala and medial bed nucleus of the stria terminalis. In addition, the findings suggest that the sexual difference in the ventromedial hypothalamic nucleus also requires gonadal hormones in adulthood. Our data support the hypothesis that sexually dimorphic oxytocin binding sites may contribute to the regulatory central actions of oxytocin in gender specific functions and behaviors such as nociception and reproduction.
European Journal of Neuroscience | 1994
M. K. Reiter; P. Kremarik; M.J. Freund-Mercier; M. E. Stoeckel; E. Desaulles; P. Feltz
Oxytocin binding sites were detected by autoradiography on films and emulsion‐coated sections in the spinal cord of adult and postnatal rats from C8 to L2, using a highly selective 125l‐labelled oxytocin antagonist. Oxytocin binding sites were detected on all transverse sections in the dorsal horn, where labelling was scattered over laminae I and II. The autonomic areas, i.e. the intermediolateral cell column, the central grey (lamina X) and the nucleus intercalatus were labelled. Binding in the intermediolateral cell column was most frequently observed on sections from T9 to T11 in adult and T7 to T8 in postnatal rats. In this location, oxytocin binding sites were highly concentrated on cell bodies of putative sympathetic preganglionic neurons; however, not all of these cells were labelled. Diffuse labelling occurred on the dorsal part of the central grey, mainly between T8 and L2. Isolated labelled cells belonging to the nucleus intercalatus were scattered between the central canal and the intermediolateral cell column. In addition, oxytocin binding sites were found on some motoneurons of the lateral group of T12‐T13, but only in postnatal rats. The distribution of oxytocin binding sites in the rat spinal cord coincides with that of the oxytocin innervation and strongly suggests a modulatory role of this peptide in sensory and autonomic functions.
Annals of Neurology | 2009
Ipek Yalcin; Nada Choucair-Jaafar; Malika Benbouzid; Luc-Henri Tessier; André Muller; Lutz Hein; M.J. Freund-Mercier; Michel Barrot
Tricyclic antidepressants (TCAs) are one of the first‐line pharmacological treatments against neuropathic pain. TCAs increase the extracellular concentrations of noradrenaline and serotonin by blocking the reuptake transporters of these amines. However, the precise downstream mechanism leading to the therapeutic action remains identified. In this work, we evaluated the role of adrenergic receptors (ARs) in the action of TCAs.
Neuroscience Letters | 1981
M.J. Freund-Mercier; Ph. Richard
The effects of oxytocin, administered into the 3rd cerebral ventricle, on the milk ejection reflex, were studied in urethane-anaesthetized lactating rats. Intramammary pressure, electrical activity of oxytocinergic neurones and EEG were recorded simultaneously. Intraventricular injection of oxytocin (6, 60 and 600 microU) significantly increased both milk ejection frequency and the number of spikes in the oxytocinergic neurones characteristic bursts. The amount of hormone released for each milk ejection was higher after intraventricular oxytocin injection than before. The strongly excitatory effect of intraventricular oxytocin injection on the milk ejection reflex was not reproduced with arginine-vasopressin.
Brain Research | 1998
Pierre Veinante; M.J. Freund-Mercier
Anatomical studies have shown that the central amygdaloid nucleus (CeA) is reciprocally connected with the lateral bed nucleus of the stria terminalis (BSTL), both structures being major components of the central extended amygdala. The CeA also receives projections from the insular cortex (InsCx) and the paraventricular thalamic nucleus (PVT). Extracellular unit activity was recorded from neurons in the lateral CeA (CeL) in urethane anaesthetized rats and their responses were studied after electrical stimulation of the BSTL, InsCx and PVT. The spontaneous activity of CeL neurons was low (1.69 spikes/s) and 40% of recorded cells were silent. The iontophoretic application of the GABAA antagonist, bicuculline, increased the firing rate of 20% of neurons. The BSTL stimulation induced an antidromic response in 33% of the tested cells. Orthodromic responses were obtained from 83% (BSTL stimulation), 70% (InsCx stimulation) and 85% (PVT stimulation) of tested cells, some of which responded to both BSTL and InsCx or PVT stimulations. Orthodromic responses mostly consisted in 1-3 orthodromic spikes followed by an inhibition. During iontophoretic application of bicuculline, stimulation induced additional short latency orthodromic spikes, even in cells that were previously unresponsive. However, the duration of the inhibition was never reduced. These results indicate that GABAergic neurotransmission may play a dominant role in both spontaneous and evoked electrical activities in the CeL, probably mediated by local circuit cells involved in a feed-forward inhibition. This organization, along with the reciprocal connections between the CeL and the BSTL, is considered in the context of the extended amygdala.
Neuroscience | 1988
M.J. Freund-Mercier; M. E. Stoeckel; M.M. Dietl; J.M. Palacios; Ph. Richard
Oxytocin and vasopressin binding sites were localized and characterized by quantitative autoradiography on consecutive sections of Long-Evans rat forebrains and pituitary glands, incubated in the presence of 5 nM [3H]oxytocin or 5 nM [3H]vasopressin. In the forebrain, two types of neurohypophysial hormone binding sites were thus defined. (1) Oxytocin/vasopressin sites with similar nanomolar-range affinities for [3H]oxytocin and [3H]vasopressin; both tritiated peptides were displaced from these sites in the presence of 10 microM of either oxytocin or vasopressin. The main areas bearing such sites were the ventral subiculum, several nuclei of the amygdala, the ventromedial hypothalamic nucleus, the bed nucleus of the stria terminalis and the olfactory tubercle. (2) Selective vasopressin sites, binding [3H]vasopressin with nanomolar-range affinity and [3H]oxytocin with a much lower affinity; these sites were not labelled in the presence of 5 nM [3H]oxytocin, and 10 microM oxytocin displaced [3H]vasopressin binding by 80%. Such sites occurred in several thalamic nuclei, in the dopaminergic A13 cell group of the zona incerta, the suprachiasmatic nucleus, the fundus striati and the lateral septal nucleus. No selective oxytocin sites were detected. Different oxytocin and vasopressin binding characteristics were found in the hypothalamo-neurohypophysial system. In the paraventricular and supraoptic nuclei and in the pituitary neural lobe the [3H]vasopressin binding density was twice that of [3H]oxytocin; vasopressin was always more potent than oxytocin in displacing both [3H]vasopressin and [3H]oxytocin binding from those sites. Interaction of the tritiated peptides with neurophysins cannot be completely ruled out in these locations. The present data are discussed in correlation with the functional roles of the neurohypophysial peptides in the brain and the pharmacological characteristics of their receptors.
Neurobiology of Disease | 2009
Ipek Yalcin; Luc-Henri Tessier; Nathalie Petit-Demoulière; Stéphane Doridot; Lutz Hein; M.J. Freund-Mercier; Michel Barrot
Neuropathic pain is a disease caused by a lesion or dysfunction of the nervous system. Antidepressants or anticonvulsants are presently the best available treatments. The mechanism by which antidepressants relieve neuropathic pain remains poorly understood. Using pharmacological and transgenic approaches in mice, we evaluated adrenergic receptor (AR) implication in the action of the tricyclic antidepressant desipramine, the noradrenaline and serotonin reuptake inhibitor venlafaxine, and the noradrenaline reuptake inhibitor reboxetine. Neuropathy was induced by cuff insertion around the sciatic nerve. We showed that chronic antidepressant treatment suppressed cuff-induced allodynia in wild-type mice but not in beta(2)-AR deficient mice, and/or that this antiallodynic action was blocked by intraperitoneal or intrathecal injection of the beta(2)-AR antagonist ICI 118,551 but not by the alpha(2)-AR antagonist yohimbine. We also showed that the anticonvulsant gabapentin was still effective in beta(2)-AR deficient mice. Our results demonstrate that beta(2)-ARs are essential for the antiallodynic action of antidepressant drugs.