M. McEvoy
Teagasc
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. McEvoy.
Journal of Dairy Science | 2009
E. Kennedy; M. McEvoy; J.P. Murphy; M. O’Donovan
The objective of this experiment was to investigate the effect of restricting pasture access time on milk production and composition, body weight and body condition score change, dry matter intake, and grazing behavior of autumn calving dairy cows in midlactation. Fifty-two (19 primiparous and 33 multiparous) Holstein-Friesian dairy cows (mean calving date, August 17 +/- 91.2 d) were randomly assigned to a 4-treatment (n = 13) randomized block design grazing study. The 4 grazing treatments were: (i) full-time access to pasture (22H; control), (ii) 9-h access to pasture (9H), (iii) two 4.5-h periods of access to pasture after both milkings (2 x 4.5H), and (iv) two 3-h periods of access to pasture after both milkings (2 x 3H). Experimental treatments were imposed from March 7 to April 6, 2007 (31 d). The pregrazing herbage mass of swards offered to all treatments was 1,268 kg of dry matter/ha, and sward organic matter digestibility was 86.4%, indicating high-quality swards conducive to high dry matter intake. Swards where animals had 22H and 2 x 4.5H access to pasture had the lowest postgrazing sward heights (3.5 cm), reflecting the greatest levels of sward utilization. After the experimental period, there were no differences in milk production; however, the 2 x 3H animals tended to have lower milk protein concentration (-0.17%) compared with 22H animals. Furthermore, dry matter intake of the 9H animals was lower than 22H animals. Although restricting access time to pasture decreased grazing time, animals compensated by increasing their intake/minute and intake/bite. Restricting pasture access time resulted in much greater grazing efficiency, because the 9H, 2 x 4.5H, and 2 x 3H treatments spent a greater proportion of their time at pasture grazing (81, 81, and 96%, respectively) than 22H animals (42%). Results of this study indicate that allocating animals restricted access to pasture does not significantly affect milk production. This study also found that the total access time should be greater than 6 h and that perhaps needs to be divided into 2 periods.
Journal of Dairy Science | 2008
M. McEvoy; E. Kennedy; J.P. Murphy; T.M. Boland; Luc Delaby; M. O’Donovan
The objective of this study was to determine the effect of daily herbage allowance (DHA) and concentrate level on milk production and dry matter intake of spring-calving dairy cows in early lactation. Seventy-two Holstein-Friesian dairy cows (mean calving date February 2) were randomly assigned across 6 treatments (n = 12) in a 2 x 3 factorial arrangement. The 6 treatments consisted of 2 DHA ( > 4 cm) and 3 concentrate levels: 13 kg of herbage dry matter/cow per d (low) or 17 kg of herbage dry matter/cow per d (high) DHA and unsupplemented, 3 kg, or 6 kg of dry matter concentrate/cow per d. The experimental period (period I) lasted 77 d and was followed by a carryover period (period II) during which animals were randomly reassigned across 2 grazing treatments offering 17 or 21 kg of herbage dry matter/cow per d. Increasing DHA significantly increased milk (+1.85 kg), solids-corrected milk, protein (+79.5 g), and lactose yields, protein concentration, and mean body weight (BW). Mean body condition score (BCS) and end-point BCS were also significantly higher with the high-DHA treatments. There was a linear response in milk yield, milk lactose concentration, and solids-corrected milk to concentrate supplementation. There was a significant difference in mean BW as concentrate increased from 0 to 3 kg (506 and 524 kg, respectively); there was no further increase in BW when 6 kg of concentrate was offered. Cows offered the low DHA had significantly lower grass dry matter intake (13.3 kg) and total dry matter intake (16.3 kg) than the high-DHA cows during period I. Concentrate supplementation significantly increased total dry matter intake. During period II, previous DHA continued to have a significant carryover effect on milk protein concentration, BW change, mean BCS, and end-point BCS. Concentrate supplementation during period I continued to have a significant carryover effect in period II on milk yield; milk fat, protein, and lactose yields; solids-corrected milk yield; BW; and mean BCS. Results from this study indicate that offering a medium level of DHA (17 kg of herbage dry matter) in early lactation will increase milk production. Offering concentrate will result in a linear increase in milk production. In an early spring feed-budgeting scenario, when grass supply is in deficit, offering 3 kg of dry matter concentrate with 17 kg of DHA has the additive effect of maintaining the grazing rotation at the target length as well as ensuring the herd is adequately fed.
Animal | 2013
Wims Cm; M. McEvoy; L. Delaby; T.M. Boland; M. O'Donovan
The objective of this experiment was to investigate the effect of four perennial ryegrass cultivars: Bealey, Astonenergy, Spelga and AberMagic on the milk yield and milk composition of grazing dairy cows. Two 4 × 4 latin square experiments were completed, one during the reproductive and the other during the vegetative growth phase of the cultivars. Thirty-two Holstein-Friesian dairy cows were divided into four groups, with each group assigned 17 days on each cultivar during both experiments. Within each observation period, milk yield and milk composition, sward morphology and pasture chemical composition were measured. During the reproductive growth phase, organic matter digestibility (OMD) was greater for Bealey and Astonenergy (P < 0.001; +1.6%). AberMagic contained a higher stem proportion (P < 0.01; +0.06) and a longer sheath height (P < 0.001; +1.9 cm). Consequently, cows grazing AberMagic recorded a lower milk yield (P < 0.001; -1.5 kg/day) and a lower milk solids yield (P < 0.001; -0.13 kg/day). During the vegetative growth phase, OMD was greater (P < 0.001; +1.1%) for Bealey, whereas the differences between the cultivars in terms of sward structure were smaller and did not appear to influence animal performance. As a result, cows grazing Bealey recorded a higher milk yield (P < 0.001; +0.9 kg/day) and a higher milk solids yield (P < 0.01; +0.08 kg/day). It was concluded that grass cultivar did influence milk yield due to variations in sward structure and chemical composition.
Animal | 2011
E. Kennedy; J. Curran; B. Mayes; M. McEvoy; J.P. Murphy; M. O'Donovan
One of the main aims of pasture-based systems of dairy production is to increase the proportion of grazed grass in the diet. This is most easily achieved by increasing the number of grazing days. However, periods of inclement weather conditions can reduce the number of days at pasture. The two objectives of this experiment were: (i) to investigate the effect of restricting pasture access time on animal production, grazing behaviour and dry matter intake (DMI) of spring calving dairy cows in early lactation; and (ii) to establish whether silage supplementation is required when cows return indoors after short grazing periods. In all, 52 Holstein-Friesian spring calving dairy cows were assigned to a four-treatment study from 25 February to 26 March 2008. The four treatments were: full-time access to pasture (22H; control); 4.5-h- pasture access after both milkings (2 × 4.5H); 3-h pasture access after both milkings (2 × 3H); 3-h pasture access after both milkings with silage supplementation by night (2 × 3SH). All treatments were offered 14.4 kg DM/cow per day herbage from swards, with a mean pre-grazing yield of 1739 kg DM/ha above 4 cm, - and were supplemented with 3 kg DM/cow per day of concentrate. The 2 × 3SH treatment was offered an additional 4 kg DM/cow of grass silage by night. Restricting pasture access time (2 × 3H, 2 × 3SH and 2 × 4.5H) had no effect on milk (28.3 kg/cow per day) and solids-corrected milk (27.2 kg/cow per day) yield when compared with the treatment grazing full time. Supplementing animals with grass silage did not increase milk production when compared with all other treatments. Milk protein concentration tended to be lower (P = 0.08; 32.2 g/kg) for the 2 × 3SH animals when compared with the 22H animals (33.7 g/kg). The grass DMI of the 2 × 3SH treatment was significantly lower (-2.3 kg DM/cow per day) than all other treatments (11.9 kg DM/cow per day), yet the total DMI of these animals was highest (16.6 kg DM/cow per day). The 22H cows grazed for 481 min/cow per day, which is significantly longer than all other treatments. The 2 × 3H animals grazed for 98% of the time, whereas the 2 × 3SH grazed for 79% of their time at pasture. Restricting pasture access time did not affect end body weight or body condition score. The results of this study indicate that restricting pasture access time of dairy cows in early lactation does not affect milk production performance. Furthermore, supplementing cows with grass silage does not increase milk production but reduces grazing efficiency.
Journal of Dairy Science | 2009
R.A. Palladino; M. O’Donovan; J.J. Murphy; M. McEvoy; J. Callan; T.M. Boland; D. A. Kenny
The objective of this study was to investigate the effect of level of 1) pregrazing herbage mass (HM) and 2) level of daily herbage allowance (DHA) on the performance and fatty acid (FA) composition of milk from grazing dairy cows. Sixty-eight Holstein-Friesian dairy cows were allocated to either a high or low pregrazing HM (1,700 vs. 2,400 kg of DM/ha; >40 mm), and within HM treatment, cows were further allocated to either a high or low DHA (16 vs. 20 kg of DM/d per cow; >40 mm) in a 2 x 2 factorial design. Pregrazing HM did not affect dry matter intake (17.5 +/- 0.75 kg/d), milk production (22.1 +/- 0.99 kg/d), milk composition (milk fat, 3.88 +/- 0.114%; milk protein, 3.28 +/- 0.051%), body weight (525 +/- 16 kg), or body condition score (2.65 +/- 0.064). Increasing DHA increased dry matter intake (+1.5 kg/d) but did not affect any other variable measured. Cows grazing the low HM or high DHA had a higher daily intake of total FA (+0.12 and +0.09 kg/d, respectively, for the low HM and high DHA), alpha-linolenic acid (LNA; +0.08 and +0.05 kg/d, respectively, for the low HM and high DHA), and linoleic acid (+0.01 for both the low HM and high DHA) compared with either the high HM or low DHA. Milk conjugated linoleic acid (cis-9, trans-11 isomer) was not affected by treatment (13.0 +/- 0.77 g/kg of total FA); however, large variation was recorded between individual animals (range from 5.9 to 20.6 g/kg of total FA). Milk concentrations of LNA were higher for animals offered the low HM (5.3 g/kg of total FA), but across treatments, milk concentrations of LNA were low (4.9 +/- 0.33 g/kg of total FA). The present study indicates that changes in HM and DHA do not have a great effect on the milk FA composition of grazing dairy cows. Further enhancement of the beneficial FA content in milk purely from changes in grazing strategy may be difficult when pasture quality is already high.
Archive | 2013
P.J. Purcell; M. O’Brien; T.M. Boland; M. McEvoy; P. O’Kiely
The selection and feeding of perennial ryegrass varieties may affect enteric methane (CH4) output due to changes in rumen fermentation dynamics as a result of differences in herbage chemical composition. Thus, the objective of this study was to determine the effects of perennial ryegrass variety (PRV) harvested throughout the growing season on herbage chemical composition and on in vitro rumen fermentation variables and CH4 output. Seven PRV (Alto, Arrow, Bealey, Dunluce, Greengold, Malone, Tyrella), managed under a simulated grazing regime, were incubated in a batch culture for 24 h with rumen fluid and buffer. PRV had no effect (P > 0.05; SEM 0.41) on CH4 output per gram of DM incubated (CH4i; mean values for Alto, Arrow, Bealey, Dunluce, Greengold, Malone, Tyrella were 23.9, 24.0, 24.7, 25.3, 25.2, 24.2 and 24.7 (SEM 0.41) ml CH4 g−1 DM incubated, respectively). Although PRV had an effect (P 0.05) on apparent DM disappearance during the in vitro rumen incubation. Thus, the lack of an effect of PRV on CH4i reflected the small scale or lack of effects on herbage composition and in vitro rumen fermentation variables. Hence, these results provide no encouragement that choices among the PRV examined, produced within the management regimes operated, would reduce enteric methane production.
Grass and Forage Science | 2010
M. McEvoy; Luc Delaby; J.P. Murphy; T.M. Boland; M. O’Donovan
Grass and Forage Science | 2015
Marion Beecher; D. Hennessy; T.M. Boland; M. McEvoy; M. O'Donovan; E. Lewis
Euphytica | 2016
J. McDonagh; M. O’Donovan; M. McEvoy; T. J. Gilliland
Grass and Forage Science | 2016
P. A. Cashman; M. McEvoy; Trevor J. Gilliland; M. O'Donovan