Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco Franchi is active.

Publication


Featured researches published by Marco Franchi.


Micron | 2002

Hierarchical structures in fibrillar collagens

Vittoria Ottani; D. Martini; Marco Franchi; Alessandro Ruggeri; Mario Raspanti

The collagen family includes several large transcripts, usually exceeding 1000 amino acid residues per single chain. As a group, they make up 1/3 of all the protein of the body and are responsible for modelling the framework of connective tissues; individually, they show both a wide variety and a complex hierarchy of mutual interactions, and form a range of functional aggregates including a variety of fibrils, microfibrils and basal membranes. Of the collagens, the fibril-forming types (i.e. the types I, II III, V and XI) are the most abundant and the most extensively studied. At the primary structure level, the amino acid sequence of all collagens is now known in detail and it shows a distinctive domain organization, its composition being dominated by the amino acid glycine (roughly 1/3 of all residues) and by post-translational hydroxylation of proline and lysine residues. Collagen secondary and tertiary structure, which together give origin to a classic triple helix, were painstakingly determined in the 1950s and 1960s. In contrast with the primary, secondary and tertiary structure, the supramolecular arrangement within collagen fibres seems to be far more elusive, and none of the models so far advanced can be said to be universally accepted. Half a century of research and debate spawned numerous mutually incompatible models, most of them focussing either on a quasi-crystalline supramolecular array or on several forms of microfibrillar aggregates, while radial fibrils, epitaxial fibrils and other structural models have almost been ignored. In many cases, data gained with a single technique from a single tissue were arbitrarily given a general legitimacy, whilst other well-documented morphological evidence went virtually unnoticed by the scientific community.Moreover, in recent years there has been a growing interest in the multiple interactions of collagens with the other macromolecules of the extra-cellular matrix, as their structure and their functional role become known. It is now indisputable that collagen interacts and forms functional entities with several other macromolecules of the extracellual matrix. This paper will succinctly review some current concepts on the structural biology of collagen higher-order structures.


The Scientific World Journal | 2007

Collagen Structure of Tendon Relates to Function

Marco Franchi; Alessandra Trirè; Marilisa Quaranta; Ester Orsini; Victoria Ottani

A tendon is a tough band of fibrous connective tissue that connects muscle to bone, designed to transmit forces and withstand tension during muscle contraction. Tendon may be surrounded by different structures: 1) fibrous sheaths or retinaculae; 2) reflection pulleys; 3) synovial sheaths; 4) peritendon sheaths; 5) tendon bursae. Tendons contain a) few cells, mostly represented by tenoblasts along with endothelial cells and some chondrocytes; b) proteoglycans (PGs), mainly decorin and hyaluronan, and c) collagen, mostly type I. Tendon is a good example of a high ordered extracellular matrix in which collagen molecules assemble into filamentous collagen fibrils (formed by microfibrils) which aggregate to form collagen fibers, the main structural components. It represents a multihierarchical structure as it contains collagen molecules arranged in fibrils then grouped in fibril bundles, fascicles and fiber bundles that are almost parallel to the long axis of the tendon, named as primary, secondary and tertiary bundles. Collagen fibrils in tendons show prevalently large diameter, a D-period of about 67 nm and appear built of collagen molecules lying at a slight angle (< 5). Under polarized light microscopy the collagen fiber bundles appear crimped with alternative dark and light transverse bands. In recent studies tendon crimps observed via SEM and TEM show that the single collagen fibrils suddenly changing their direction contain knots. These knots of collagen fibrils inside each tendon crimp have been termed “fibrillar crimps”, and even if they show different aspects they all may fulfil the same functional role. As integral component of musculoskeletal system, the tendon acts to transmit muscle forces to the skeletal system. There is no complete understanding of the mechanisms in transmitting/absorbing tensional forces within the tendon; however it seems likely that a flattening of tendon crimps may occur at a first stage of tendon stretching. Increasing stretching, other transmission mechanisms such as an interfibrillar coupling via PGs linkages and a molecular gliding within the fibrils structure may be involved.


Journal of Anatomy | 2007

Crimp morphology in relaxed and stretched rat Achilles tendon.

Marco Franchi; Milena Fini; Marilisa Quaranta; Viviana De Pasquale; Mario Raspanti; Gianluca Giavaresi; Vittoria Ottani; Alessandro Ruggeri

Fibrous extracellular matrix of tendon is considered to be an inextensible anatomical structure consisting of type I collagen fibrils arranged in parallel bundles. Under polarized light microscopy the collagen fibre bundles appear crimped with alternating dark and light transverse bands. This study describes the ultrastructure of the collagen fibrils in crimps of both relaxed and in vivo stretched rat Achilles tendon. Under polarized light microscopy crimps of relaxed Achilles tendons appear as isosceles or scalene triangles of different size. Tendon crimps observed via SEM and TEM show the single collagen fibrils that suddenly change their direction containing knots. The fibrils appear partially squeezed in the knots, bent on the same plane like bayonets, or twisted and bent. Moreover some of them lose their D‐period, revealing their microfibrillar component. These particular aspects of collagen fibrils inside each tendon crimp have been termed ‘fibrillar crimps’ and may fulfil the same functional role. When tendon is physiologically stretched in vivo the tendon crimps decrease in number (46.7%) (P < 0.01) and appear more flattened with an increase in the crimp top angle (165° in stretched tendons vs. 148° in relaxed tendons, P < 0.005). Under SEM and TEM, the ‘fibrillar crimps’ are still present, never losing their structural identity in straightened collagen fibril bundles of stretched tendons even where tendon crimps are not detectable. These data suggest that the ‘fibrillar crimp’ may be the true structural component of the tendon crimp acting as a shock absorber during physiological stretching of Achilles tendon.


Biomaterials | 2003

Detachment of titanium and fluorohydroxyapatite particles in unloaded endosseous implants

D. Martini; Milena Fini; Marco Franchi; V. De Pasquale; Beatrice Bacchelli; M. Gamberini; Anna Tinti; Paola Taddei; Gianluca Giavaresi; Vittoria Ottani; M. Raspanti; Stefano Guizzardi; Alessandra Ruggeri

The shape, surface composition and morphology of orthopaedic and endosseous dental titanium implants are key factors to achieve post-surgical and long-term mechanical stability and enhance implant osteointegration. In this study a comparison was made between 12 titanium screws, plasma-spray-coated with titanium powders (TPS), and 12 screws with an additional coating of fluorohydroxyapatite (FHA-Ti). Screws were implanted in the femoral and tibial diaphyses of two mongrel sheep and removed with peri-implant tissues 12 weeks after surgery. The vibrational spectroscopic, ultrastructural and morphological analyses showed good osteointegration for both types of implants in host cortical bone. The portion of the FHA-Ti implants in contact with the medullary canal showed a wider area of newly formed peri-implant bone than that of the TPS implants. Morphological and EDAX analyses demonstrated the presence of small titanium debris in the bone medullary spaces near the TPS surface, presumably due to the friction between the host bone and the implant during insertion. Few traces of titanium were detected around FHA-Ti implants, even if smaller FHA debris were present. The present findings suggest that the FHA coating may act as a barrier against the detachment of titanium debris stored in the medullary spaces near the implant surface.


Journal of Anatomy | 2010

Tendon and ligament fibrillar crimps give rise to left-handed helices of collagen fibrils in both planar and helical crimps

Marco Franchi; Vittoria Ottani; R. Stagni; Alessandro Ruggeri

Collagen fibres in tendons and ligaments run straight but in some regions they show crimps which disappear or appear more flattened during the initial elongation of tissues. Each crimp is formed of collagen fibrils showing knots or fibrillar crimps at the crimp top angle. The present study analyzes by polarized light microscopy, scanning electron microscopy, transmission electron microscopy the 3D morphology of fibrillar crimp in tendons and ligaments of rat demonstrating that each fibril in the fibrillar region always twists leftwards changing the plane of running and sharply bends modifying the course on a new plane. The morphology of fibrillar crimp in stretched tendons fulfills the mechanical role of the fibrillar crimp acting as a particular knot/biological hinge in absorbing tension forces during fibril strengthening and recoiling collagen fibres when stretching is removed. The left‐handed path of fibrils in the fibrillar crimp region gives rise to left‐handed fibril helices observed both in isolated fibrils and sections of different tendons and ligaments (flexor digitorum profundus muscle tendon, Achilles tendon, tail tendon, patellar ligament and medial collateral ligament of the knee). The left‐handed path of fibrils represents a new final suprafibrillar level of the alternating handedness which was previously described only from the molecular to the microfibrillar level. When the width of the twisting angle in the fibrillar crimp is nearly 180° the fibrils appear as left‐handed flattened helices forming crimped collagen fibres previously described as planar crimps. When fibrils twist with different subsequent rotational angles (< 180°) they always assume a left‐helical course but, running in many different nonplanar planes, they form wider helical crimped fibres.


Acta Biomaterialia | 2009

Influence of a zirconia sandblasting treated surface on peri-implant bone healing: An experimental study in sheep.

Beatrice Bacchelli; Gianluca Giavaresi; Marco Franchi; D. Martini; Viviana De Pasquale; Alessandra Trirè; Milena Fini; Roberto Giardino; Alessandro Ruggeri

A sandblasting process with round zirconia (ZrO(2)) particles might be an alternative surface treatment to enhance the osseointegration of titanium dental implants. Our previous study on sheep compared smooth surface titanium implants (control) with implant surfaces sandblasted with two different granulations of ZrO(2). As the sandblasted surfaces proved superior, the present study further compared the ZrO(2) surface implant with other surface treatments currently employed: machined titanium (control), titanium oxide plasma sprayed (TPS) and alumina sandblasted (Al-SL) at different times after insertion (2, 4 and 12weeks). Twelve sheep were divided into three groups of four animals each and underwent implant insertion in tibia cortical bone under general anaesthesia. The implants with surrounding tissues were subjected to histology, histomorphometry, scanning electron microscopy and microhardness tests. The experimentation indicated that at 2weeks Zr-SL implants had the highest significant bone ingrowth (p<0.05) compared to the other implant surfaces, and a microhardness of newly formed bone inside the threads significantly higher than that of Ti. The present work shows that the ZrO(2) treatment produces better results in peri-implant newly formed bone than Ti and TPS processing, whereas its performance is similar to the Al-SL surface treatment.


Connective Tissue Research | 2008

Different Crimp Patterns in Collagen Fibrils Relate to the Subfibrillar Arrangement

Marco Franchi; Mario Raspanti; Carlo Dell’Orbo; Marilisa Quaranta; Viviana De Pasquale; Vittoria Ottani; Alessandro Ruggeri

Collagen fibril ultrastructure and course were examined in different connective tissues by PLM, SEM, TEM, and AFM. In tendons, collagen fibrils were large and heterogeneous with a straight subfibrillar arrangement. They ran densely packed, parallel, and straight changing their direction only in periodic crimps where fibrils showed a local deformation (fibrillar crimps). Other tissues such as aponeurosis, fascia communis, skin, aortic wall, and tendon and nerve sheaths showed thinner uniform fibrils with a helical subfibrillar arrangement. These fibrils appeared in parallel or helical arrangement following a wavy, undulating course. Ligaments showed large fibrils as in tendon, with fibrillar crimps but less packed. Thinner uniform-sized fibrils also were observed. Fibrillar crimps seem to be related to the subfibrillar arrangement being present only in large fibrils with a straight subfibrillar arrangement. These stiffer fibrils respond mainly to unidirectional tensional forces, whereas the flexible thinner fibrils with helical subfibrils can accommodate extreme curvatures without harm, thus responding to multidirectional loadings.


The Scientific World Journal | 2004

Osteogenesis and Morphology of the Peri-Implant Bone Facing Dental Implants

Marco Franchi; Ester Orsini; Alessandra Trirè; Marilisa Quaranta; D. Martini; Gabriella Giuliani Piccari; Alessandro Ruggeri; Vittoria Ottani

This study investigated the influence of different implant surfaces on peri-implant osteogenesis and implant face morphology of peri-implant tissues during the early (2 weeks) and complete healing period (3 months). Thirty endosseous titanium implants (conic screws) with differently treated surfaces (smooth titanium = SS, titanium plasma sprayed = TPS, sand-blasted zirconium oxide = Zr-SLA) were implanted in femur and tibiae diaphyses of two mongrel sheep. Histological sections of the implants and surrounding tissues obtained by sawing and grinding techniques were observed under light microscopy (LM). The peri-implant tissues of other samples were mechanically detached from the corresponding implants to be processed for SEM observation. Two weeks after implantation, we observed osteogenesis (new bone trabeculae) around all implant surfaces only where a gap was present at the host bone-metal interface. No evident bone deposition was detectable where threads of the screws were in direct contact with the compact host bone. Distance osteogenesis predominated in SS implants, while around rough surfaces (TPS and Zr-SLA), both distance and contact osteogenesis were present. At SEM analysis 2 weeks after implantation, the implant face of SS peri-implant tissue showed few, thin, newly formed, bone trabeculae immersed in large, loose, marrow tissue with blood vessels. Around the TPS screws, the implant face of the peri-implant tissue was rather irregular because of the rougher metal surface. Zr-SLA screws showed more numerous, newly formed bone trabeculae crossing marrow spaces and also needle-like crystals in bone nodules indicating an active mineralising process. After 3 months, all the screws appeared osseointegrated, being almost completely covered by a compact, mature, newly formed bone. However, some marrow spaces rich in blood vessels and undifferentiated cells were in contact with the metal surface. By SEM analysis, the implant face of the peri-implant tissue showed different results. Around the SS screws, the compact bone with areas of different mineralisation rate appeared very smooth, while around the rougher TPS screws, the bone still showed an irregular surface corresponding to the implant macro/microroughness. Around the Zr-SLA screws, a more regular implant-bone surface and sparse, calcified marrow spaces were detectable.Results from this research suggest that 2 weeks after implantation, trabecular bone represents the calcified healing tissue, which supports the early biological fixation of the implants. The peri-implant marrow spaces, rich in undifferentiated cells and blood vasculature, observed both 2 weeks and 3 months after surgery, favour the biological turnover of both early and mature peri-implant bone. The implant surface morphology strongly influences the rate and the modality of peri-implant osteogenesis, as do the morphology and arrangement of the implant face in peri-implant bone both during early healing (after 2 weeks) and when the implant is just osseointegrated; rough surfaces, and in particular Zr-SLA, seem to better favour bone deposition on the metal surface.


Journal of Anatomy | 1998

Collagen fibril arrangement and size distribution in monkey oral mucosa

Vittoria Ottani; Marco Franchi; V. De Pasquale; Leonardi L; M. Morocutti; Alessandro Ruggeri

Collagen fibre organisation and fibril size were studied in the buccal gingival and hard palate mucosa of Macacus rhesus monkey. Light and electron microscopy analysis showed connective papillae exhibiting a similar inner structure in the different areas examined, but varying in distribution, shape and size. Moving from the deep to surface layers of the buccal gingival mucosa (free and attached portions), large collagen fibril bundles became smaller and progressively more wavy with decreasing collagen fibril diameter. This gradual diameter decrease did not occur in the hard palate mucosa (free portion, rugae and interrugal regions) where the fibril diameter remained constant. A link between collagen fibril diameter and mechanical function is discussed.


Bone | 2013

Alteration of proteoglycan sulfation affects bone growth and remodeling

Benedetta Gualeni; Marie-Christine de Vernejoul; Caroline Marty‐Morieux; Fabio De Leonardis; Marco Franchi; Luca Monti; Antonella Forlino; Pascal Houillier; Antonio Rossi; Valérie Geoffroy

Diastrophic dysplasia (DTD) is a chondrodysplasia caused by mutations in the SLC26A2 gene, leading to reduced intracellular sulfate pool in chondrocytes, osteoblasts and fibroblasts. Hence, proteoglycans are undersulfated in the cartilage and bone of DTD patients. To characterize the bone phenotype of this skeletal dysplasia we used the Slc26a2 knock-in mouse (dtd mouse), that was previously validated as an animal model of DTD in humans. X-rays, bone densitometry, static and dynamic histomorphometry, and in vitro studies revealed a primary bone defect in the dtd mouse model. We showed in vivo that this primary bone defect in dtd mice is due to decreased bone accrual associated with a decreased trabecular and periosteal appositional rate at the cell level in one month-old mice. Although the osteoclast number evaluated by histomorphometry was not different in dtd compared to wild-type mice, urine analysis of deoxypyridinoline cross-links and serum levels of type I collagen C-terminal telopeptides showed a higher resorption rate in dtd mice compared to wild-type littermates. Electron microscopy studies showed that collagen fibrils in bone were thinner and less organized in dtd compared to wild-type mice. These data suggest that the low bone mass observed in mutant mice could possibly be linked to the different bone matrix compositions/organizations in dtd mice triggering changes in osteoblast and osteoclast activities. Overall, these results suggest that proteoglycan undersulfation not only affects the properties of hyaline cartilage, but can also lead to unbalanced bone modeling and remodeling activities, demonstrating the importance of proteoglycan sulfation in bone homeostasis.

Collaboration


Dive into the Marco Franchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge