Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Viviana De Pasquale is active.

Publication


Featured researches published by Viviana De Pasquale.


Journal of Anatomy | 2007

Crimp morphology in relaxed and stretched rat Achilles tendon.

Marco Franchi; Milena Fini; Marilisa Quaranta; Viviana De Pasquale; Mario Raspanti; Gianluca Giavaresi; Vittoria Ottani; Alessandro Ruggeri

Fibrous extracellular matrix of tendon is considered to be an inextensible anatomical structure consisting of type I collagen fibrils arranged in parallel bundles. Under polarized light microscopy the collagen fibre bundles appear crimped with alternating dark and light transverse bands. This study describes the ultrastructure of the collagen fibrils in crimps of both relaxed and in vivo stretched rat Achilles tendon. Under polarized light microscopy crimps of relaxed Achilles tendons appear as isosceles or scalene triangles of different size. Tendon crimps observed via SEM and TEM show the single collagen fibrils that suddenly change their direction containing knots. The fibrils appear partially squeezed in the knots, bent on the same plane like bayonets, or twisted and bent. Moreover some of them lose their D‐period, revealing their microfibrillar component. These particular aspects of collagen fibrils inside each tendon crimp have been termed ‘fibrillar crimps’ and may fulfil the same functional role. When tendon is physiologically stretched in vivo the tendon crimps decrease in number (46.7%) (P < 0.01) and appear more flattened with an increase in the crimp top angle (165° in stretched tendons vs. 148° in relaxed tendons, P < 0.005). Under SEM and TEM, the ‘fibrillar crimps’ are still present, never losing their structural identity in straightened collagen fibril bundles of stretched tendons even where tendon crimps are not detectable. These data suggest that the ‘fibrillar crimp’ may be the true structural component of the tendon crimp acting as a shock absorber during physiological stretching of Achilles tendon.


Foot & Ankle International | 1991

Human Achilles Tendon: Morphological and Morphometric Variations as a Function of Age

R. Strocchi; Viviana De Pasquale; Stefano Guizzardi; Paolo Govoni; Alberto Facchini; M. Raspanti; Mauro Girolami; Sandro Giannini

Aging of human Achilles tendon results in changes in both cellular and fibrous components. Cells flatten and become less numerous. Their thin and long cytoplasmatic projections tend to shorten and diminish in number. Tendon fibers lose their typical undulating appearance and become quite straight. Collagen fibril diameter, small and uniform in the neonatal period, becomes large and extremely variable from adolescence onwards. Age related morphometric changes include a decrease in the average, maximum diameter and density of collagen fibrils and an increase of fibril concentration. In our opinion these morphological and morphometric variations are strictly related to functional requirements.


International Orthopaedics | 2008

Effects of freezing on the biomechanical and structural properties of human posterior tibial tendons

Sandro Giannini; Roberto Buda; Francesco Di Caprio; Patrizia Agati; Adriana Bigi; Viviana De Pasquale; Alessandro Ruggeri

This work analyzes the effects of storage by fresh-freezing at −80°C on the histological, structural and biomechanical properties of the human posterior tibial tendon (PTT), used for ACL reconstruction. Twenty-two PTTs were harvested from eleven donors. For each donor one tendon was frozen at −80°C and thawed in physiological solution at 37°C, and the other was tested without freezing (control). Transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and biomechanical analysis were performed. We found the following mean changes in frozen-thawed tendons compared to controls: TEM showed an increase in the mean diameter of collagen fibrils and in fibril non-occupation mean ratio, while the mean number of fibrils decreased; DSC showed a decrease in mean denaturation temperature and denaturation enthalpy. Biomechanical analysis showed a decrease in ultimate load and ultimate stress, an increase in stiffness and a decrease in ultimate strain of tendons. In conclusion fresh-freezing brings about significant changes in the biomechanical and structural properties of the human PTT. A high variability exists in the biophysical properties of tendons among individuals and in the effects of storage on tendons. Therefore, when choosing an allograft tendon, particular care is needed to choose a biomechanically suitable graft.RésuméCe travail a pour but d’analyser les effets du stockage à −80°C sur le plan histologique, structurel et biomécanique d’un tendon le tibial ou jambier postérieur (PTT), utilisé pour la reconstruction des ligaments croisés antérieurs. 22 PTT ont été conservées provenant de 11 donneurs. Pour chaque donneur un tendon a été congelé à −80°C et l’autre, conservé dans une solution physiologique à 37°C. Ces tendons ont été testés. L’examen par microscope électronique (TEM), le scanner calorimétrique (DSC) et une analyse biomécanique ont été réalisés. Nous avons trouvé des changements dans les tendons conservés au froid en comparaison du groupe contrôle. Le TEM, examen au microscope électronique a montré une diminution du diamètre des fibres collagènes. L’analyse biomécanique a montré également une diminution de la résistance à la charge et au stress ainsi qu’une augmentation de la rigidité et une diminution des contraintes terminales au niveau du tendon. En conclusion: la congélation des tendons frais amène des modifications significatives des caractéristiques biomécaniques et structurelles du tendon PTT humain. Il existe une variation importante des propriétés biophysiques des tendons parmi les individus et du fait de leurs conservations. Pour cela, il est nécessaire lorsque l’on choisit un tendon et une allogreffe du tendon d’apporter dans le choix sur le plan biomécanique un soin particulier.


Acta Biomaterialia | 2009

Influence of a zirconia sandblasting treated surface on peri-implant bone healing: An experimental study in sheep.

Beatrice Bacchelli; Gianluca Giavaresi; Marco Franchi; D. Martini; Viviana De Pasquale; Alessandra Trirè; Milena Fini; Roberto Giardino; Alessandro Ruggeri

A sandblasting process with round zirconia (ZrO(2)) particles might be an alternative surface treatment to enhance the osseointegration of titanium dental implants. Our previous study on sheep compared smooth surface titanium implants (control) with implant surfaces sandblasted with two different granulations of ZrO(2). As the sandblasted surfaces proved superior, the present study further compared the ZrO(2) surface implant with other surface treatments currently employed: machined titanium (control), titanium oxide plasma sprayed (TPS) and alumina sandblasted (Al-SL) at different times after insertion (2, 4 and 12weeks). Twelve sheep were divided into three groups of four animals each and underwent implant insertion in tibia cortical bone under general anaesthesia. The implants with surrounding tissues were subjected to histology, histomorphometry, scanning electron microscopy and microhardness tests. The experimentation indicated that at 2weeks Zr-SL implants had the highest significant bone ingrowth (p<0.05) compared to the other implant surfaces, and a microhardness of newly formed bone inside the threads significantly higher than that of Ti. The present work shows that the ZrO(2) treatment produces better results in peri-implant newly formed bone than Ti and TPS processing, whereas its performance is similar to the Al-SL surface treatment.


Connective Tissue Research | 2008

Different Crimp Patterns in Collagen Fibrils Relate to the Subfibrillar Arrangement

Marco Franchi; Mario Raspanti; Carlo Dell’Orbo; Marilisa Quaranta; Viviana De Pasquale; Vittoria Ottani; Alessandro Ruggeri

Collagen fibril ultrastructure and course were examined in different connective tissues by PLM, SEM, TEM, and AFM. In tendons, collagen fibrils were large and heterogeneous with a straight subfibrillar arrangement. They ran densely packed, parallel, and straight changing their direction only in periodic crimps where fibrils showed a local deformation (fibrillar crimps). Other tissues such as aponeurosis, fascia communis, skin, aortic wall, and tendon and nerve sheaths showed thinner uniform fibrils with a helical subfibrillar arrangement. These fibrils appeared in parallel or helical arrangement following a wavy, undulating course. Ligaments showed large fibrils as in tendon, with fibrillar crimps but less packed. Thinner uniform-sized fibrils also were observed. Fibrillar crimps seem to be related to the subfibrillar arrangement being present only in large fibrils with a straight subfibrillar arrangement. These stiffer fibrils respond mainly to unidirectional tensional forces, whereas the flexible thinner fibrils with helical subfibrils can accommodate extreme curvatures without harm, thus responding to multidirectional loadings.


The Scientific World Journal | 2010

Contribution of glycosaminoglycans to the microstructural integrity of fibrillar and fiber crimps in tendons and ligaments.

Marco Franchi; Viviana De Pasquale; D. Martini; Marilisa Quaranta; Maria Macciocca; Alessio Dionisi; Vittoria Ottani

The biomechanical roles of both tendons and ligaments are fulfilled by the extracellular matrix of these tissues. In particular, tension is mainly transmitted and resisted by protein (collagen, elastin) fibers, whereas compression is opposed by water-soluble glycosaminoglycans (GAGs). GAGs spanning the interfibrillar spaces and interacting with fibrils through the interfibrillar proteoglycans also seem to play a part in transmitting and resisting tensile stresses. Both tendons and ligaments showing similar composition, but different functional roles and collagen array, exhibit periodic undulations of collagen fibers or crimps. Each crimp is composed of many knots of each single fibril or fibrillar crimps. Fibrillar and fiber crimps play a mechanical role in absorbing the initial loading during elongation of both tendons and ligaments, and in recoiling fibrils and fibers when tissues have to return to their original length. This study investigated whether GAGs covalently attached to proteoglycan core proteins directly affect the 3D microstructural integrity of fibrillar crimp regions and fiber crimps in both tendons and ligaments. Achilles tendons and medial collateral ligaments of the knee from eight female Sprague-Dawley rats (90 days old) incubated in a chondroitinase ABC solution to remove GAGs were observed under a scanning electron microscope (SEM). In addition, isolated fibrils of these tissues obtained by mechanical disruption were analyzed by a transmission electron microscope (TEM). Both Achilles tendons and medial collateral ligaments of the rats after chemical or mechanical removal of GAGs still showed crimps and fibrillar crimps comparable to tissues with a normal GAG content. All fibrils in the fibrillar crimp region always twisted leftwards, thus changing their running plane, and then sharply bent, changing their course on a new plane. These data suggest that GAGs do not affect structural integrity or fibrillar crimp functions that seem mainly related to the local fibril leftward twisting and the alternating handedness of collagen from a molecular to a supramolecular level.


The Scientific World Journal | 2010

Correlative Microscopy of Bone in Implant Osteointegration Studies

Alessandra Trirè; D. Martini; Ester Orsini; Marco Franchi; Viviana De Pasquale; Beatrice Bacchelli; Mario Raspanti; Alessandro Ruggeri; Vittoria Ottani

Routine morphological analyses usually include investigations by light microscopy (LM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Each of these techniques provides specific information on tissue morphology and all the obtained results are then combined to give an in-depth morphological overview of the examined sample. The limitations of this traditional comparative microscopy lie in the fact that each technique requires a different experimental sample, so that many specimens are necessary and the combined results come from different samples. The present study describes a technical procedure of correlative microscopy, which allows us to examine the same bone section first by LM and then, after appropriate processing, by SEM or TEM. Thanks to the possibility of analyzing the same undecalcified bone sections both by LM and SEM, the approach described in the present study allows us to make very accurate evaluations of old/new bone morphology at the bone-implant interface.


Journal of Periodontology | 2007

Influence of Different Implant Surfaces on Peri-Implant Osteogenesis: Histomorphometric Analysis in Sheep

Marco Franchi; Beatrice Bacchelli; Gianluca Giavaresi; Viviana De Pasquale; D. Martini; Milena Fini; Roberto Giardino; Alessandro Ruggeri


Micron | 2009

Structure relates to elastic recoil and functional role in quadriceps tendon and patellar ligament.

Marco Franchi; Marilisa Quaranta; Maria Macciocca; Viviana De Pasquale; Vittoria Ottani; Alessandro Ruggeri


Knee Surgery, Sports Traumatology, Arthroscopy | 2010

Electron microscopy of the remodelling process in hamstring tendon used as ACL graft

Stefano Zaffagnini; Viviana De Pasquale; Leonardo Marchesini Reggiani; Alessandro Russo; Patrizia Agati; Beatrice Bacchelli; Maurilio Marcacci

Collaboration


Dive into the Viviana De Pasquale's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge