Marco Proposito
ENEA
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marco Proposito.
Journal of Glaciology | 2005
Massimo Frezzotti; Michel Pourchet; O. Flora; S. Gandolfi; Stefano Urbini; Christian Vincent; Silvia Becagli; Roberto Gragnani; Marco Proposito; Mirko Severi; Rita Traversi; Roberto Udisti; Michel Fily
Recent snow accumulation rate is a key quantity for ice-core and mass-balance studies. Several accumulation measurement methods (stake farm, fin core, snow-radar profiling, surface morphology, remote sensing) were used, compared and integrated at eight sites along a transect from Terra Nova Bay to Dome C, East Antarctica, to provide information about the spatial and temporal variability of snow accumulation. Thirty-nine cores were dated by identifying tritium/b marker levels (1965-66) and non-sea-salt (nss) SO4 2- spikes of the Tambora (Indonesia) volcanic event (1816) in order to provide information on temporal variability. Cores were linked by snow radar and global positioning system surveys to provide detailed information on spatial variability in snow accumulation. Stake-farm and ice-core accumulation rates are observed to differ significantly, but isochrones (snow radar) correlate well with ice-core derived accumulation. The accumulation/ablation pattern from stake measurements suggests that the annual local noise (metre scale) in snow accumulation can approach 2 years of ablation and more than four times the average annual accumulation, with no accumulation or ablation for a 5 year period in up to 40% of cases. The spatial variability of snow accumulation at the kilometre scale is one order of magnitude higher than temporal variability at the multi-decadal/secular scale. Stake measurements and firn cores at Dome C confirm an approximate 30% increase in accumulation over the last two centuries, with respect to the average over the last 5000 years.
Annals of Glaciology | 2005
Nancy A. N. Bertler; Paul Andrew Mayewski; Alberto J. Aristarain; P. Barrett; S. Becagli; R. Bernardo; S. Bo; C. Xiao; M. Curran; D. Qin; Daniel A. Dixon; Francisco A. Ferron; Hubertus Fischer; Markus M. Frey; M. Frezzotti; F. Fundel; C. Genthon; Roberto Gragnani; Gordon S. Hamilton; M. Handley; Sungmin Hong; Elisabeth Isaksson; J.-H. Kang; J. Ren; K. Kamiyama; S. Kanamori; E. Karkas; L. Karlöf; Susan Kaspari; Karl J. Kreutz
Abstract An updated compilation of published and new data of major-ion (Ca, Cl, K, Mg, Na, NO3, SO4) and methylsulfonate (MS) concentrations in snow from 520 Antarctic sites is provided by the national ITASE (International Trans-Antarctic Scientific Expedition) programmes of Australia, Brazil, China, Germany, Italy, Japan, Korea, New Zealand, Norway, the United Kingdom, the United States and the national Antarctic programme of Finland. The comparison shows that snow chemistry concentrations vary by up to four orders of magnitude across Antarctica and exhibit distinct geographical patterns. The Antarctic-wide comparison of glaciochemical records provides a unique opportunity to improve our understanding of the fundamental factors that ultimately control the chemistry of snow or ice samples. This paper aims to initiate data compilation and administration in order to provide a framework for facilitation of Antarctic-wide snow chemistry discussions across all ITASE nations and other contributing groups. The data are made available through the ITASE web page (http://www2.umaine.edu/itase/content/syngroups/snowchem.html) and will be updated with new data as they are provided. In addition, recommendations for future research efforts are summarized.
Annals of Glaciology | 2002
Marco Proposito; Silvia Becagli; E. Castellano; O. Flora; L. Genoni; Roberto Gragnani; Barbara Stenni; Rita Traversi; Roberto Udisti; Massimo Frezzotti
Abstract In the framework of the PNRA–ITASE (Programma Nazionale di Ricerche in Antartide–International Trans-Antarctic Scientific Expedition) project, during the field season 1998/99, surface snow (1m cores and pits) and shallow firn cores (10–50m) were collected along a traverse from Terra Nova Bay (northern Victoria Land) to Dome C (East Antarctic ice sheet). Results of chemical, tritium and stable-isotope composition are presented here for the 1 m cores, some snow pits and the first 2 mof some shallow firn cores. the δ18O values show a regular trend with altitude, and the regression line between δ18O and surface temperature is δ18O = 0.99T (˚C) – 0.67. Primary aerosol components such as Na+, Cl–, Ca2+,Mg2+ and K+ show high concentrations decreasing with increasing altitude in the first 250–350km from the coast. At greater distances, concentrations of these species remain more constant. NO3 – concentration shows an irregular profile with a progressive decreasing trend as altitude increases. Non-sea-salt (nss) SO4 2– concentration decreases up to about 250 km from the coast, increases 250–770 km from the coast and remains relatively constant in the most remote stations. Methanesulphonate (MSA) concentration shows high variability. the MSA/nssSO4 2– ratio exhibits a decreasing trend 250–550km from the coast. With increasing distance, the ratio shows moderate oscillations. nssCl– concentration shows a progressive increase as distance from the coast increases, in agreement with the increasing influence of HCl on the Cl– budget of the inland Antarctic atmosphere. Post-depositional re-emissions of Cl– and NO3 – were found at stations characterized at the surface by long-term accumulation hiatus (wind crusts). the chemical-species distribution is consistent with the presence in the studied area of local and long-range transport processes, post-depositional effects and snow-accumulation variations observed along the traverse.
Annals of Glaciology | 2005
S. Benassai; Silvia Becagli; Roberto Gragnani; Olivier Magand; Marco Proposito; I. Fattori; Rita Traversi; Roberto Udisti
Abstract Sea-salt markers (Na+, Mg2+ and Cl–) were analyzed in recent snow collected at more than 600 sites located in coastal and central areas of East Antarctica (northern Victoria Land–Dome C–Wilkes Land), in order to understand the effect of site remoteness, transport efficiency and depositional and post-depositional processes on the spatial distribution of the primary marine aerosol. Firn-core, snow-pit and 1m integrated superficial snow samples were collected in the framework of the International Trans-Antarctic Scientific Expeditions (ITASE) project during recent Italian Antarctic Campaigns (1992–2002). The sampling sites were mainly distributed along coast–inland traverses (northern Victoria Land– Dome C) and an east–west transect following the 2100m contour line (Wilkes Land). At each site, the snow ionic composition was determined. Here, we discuss the distribution of sea-spray components (Na+, Mg2+ and Cl–) as a function of distance from the sea, altitude and accumulation rate, in order to discover the pulling-down rate, possible fractionating phenomena and alternative sources moving inland from coastal areas. Sea-spray depositional fluxes decrease as a function of distance from the sea and altitude. A two-order-of-magnitude decrease occurs in the first 200km from the sea, corresponding to about 2000ma.s.l. Correlations of Mg2+ and Cl– with Na+ and trends of Mg2+/Na+ and Cl–/Na+ ratios showed that chloride has other sources than sea spray (HCl) and is affected by post-depositional processes. Accumulation rate higher than 80 kgm–2 a–1 preserves the chloride record in the snow. Sea-spray atmospheric scavenging is dominated by wet deposition in coastal and inland sites.
Annals of Glaciology | 2004
Silvia Becagli; Marco Proposito; S. Benassai; O. Flora; L. Genoni; Roberto Gragnani; O. Largiuni; Simone Luca Pili; Mirko Severi; Barbara Stenni; Rita Traversi; Roberto Udisti; Massimo Frezzotti
Abstract As part of the International Trans-Antarctic Scientific Expedition (ITASE) project, a traverse was carried out from November 2001 to January 2002 through Terre Adélie, George V Land, Oates Land and northern Victoria Land, for a total length of about 1875 km. The research goal is to determine the latitudinal and longitudinal variability of physical, chemical and isotopic parameters along three transects: one west–east transect (WE), following the 2150m contour line (about 400 km inland of the Adélie, George V and Oates coasts), and two north–south transects (inland Terre Adélie and Oates Coast–Talos Dome–Victoria Land). The intersection between the WE and Oates Coast–Victoria Land transects is in the Talos Dome area. Along the traverse, eight 2 m deep snow pits were dug and sampled with a 2.5 cm depth resolution. For spatial variability, 1 m deep integrated samples were collected every 5 km (363 sampling sites). In the snow-pit stratigraphy, pronounced annual cycles, with summer maxima, were observed for nssSO4 2–, MSA, NO3 – and H2O2. The seasonality of these chemical trace species was used in combination with stable-isotope stratigraphy to derive reliable and temporally representative snow-accumulation rates. The study of chemical, isotopic and accumulation-rate variability allowed the identification of a distribution pattern which is controlled not only by altitude and distance from the sea, but also by the complex circulation of air masses in the study area. In particular, although the Talos Dome area is almost equidistant from the Southern Ocean and the Ross Sea, local atmospheric circulation is such that the area is strongly affected only by the Ross Sea. Moreover, we observed a decrease in concentration of aerosol components in the central portion of the WE transect and in the southern portion of the Talos Dome transect; this decrease was linked to the higher stability of atmospheric pressure due to the channelling of katabatic winds.
Antarctic Science | 2001
Biancamaria Narcisi; Marco Proposito; Massimo Frezzotti
A volcanic event, represented by both coarse ash and a prominent sulphate peak, has been detected at a depth of 85.82 m in a 90 m ice core drilled at Talos Dome, northern Victoria Land. Accurate dating of the core, based on counting annual sulphate and nitrate fluctuations and on comparison with records of major known volcanic eruptions, indicates that the event occurred in 1254 ± 2 AD. The source volcano is most likely to be located within the Ross Sea region. In particular, the glass shards have a trachytic composition similar to rocks from The Pleiades and Mount Rittmann (Melbourne volcanic province), about 200 km from Talos Dome. Sulphate concentration is comparable with that of violent extra-Antarctic explosive events recorded in the same core, but atmospheric perturbation was short-lived and localized, suggesting a negligible impact on regional climate. It is suggested that this eruption may represent the most important volcanic explosion in the Melbourne province during the last eight centuries; thus this event may also represent a valuable chrono-stratigraphical marker on the East Antarctic plateau and in adjoining areas.
Annals of Glaciology | 2005
Silvia Becagli; Marco Proposito; S. Benassai; Roberto Gragnani; Olivier Magand; Rita Traversi; Roberto Udisti
Abstract During the 1992–2002 Antarctic expeditions, in the framework of the International Trans-Antarctic Expedition (ITASE) project, about 600 sites were sampled (superficial snow, snow pits and firn cores) along traverses in the northern Victoria Land–Dome C–Wilkes Land region. The sites were characterized by different geographical (distance from the sea, altitude) and climatological (annual mean accumulation rate, temperature) conditions and were affected by air masses from different marine sectors (Ross Sea, Pacific Ocean). Mean anion and cation contents were calculated at each site, in order to evaluate the spatial distribution of chemical impurities in snow. Here we discuss the distribution of non-sea-salt sulphate (nssSO4 2–) and of methanesulphonic acid (MSA) mainly originating from atmospheric oxidation of biogenic dimethyl sulphide; these compounds play a key role in climate control processes by acting as cloud condensation nuclei. The spatial distribution of nssSO4 2– and MSA is discussed as a function of distance from the sea, altitude and accumulation rate. Depositional fluxes of nssSO4 2– and MSA decrease as a function of distance from the sea, with a higher gradient in the first 200km step. There is an analogous trend with the site altitude, and the first 1600m step is relevant in determining the nssSO4 2– and MSA content in snow. The nssSO4 2–/MSA ratio depends on the distance from the sea and the biogenic source strength. At coastal sites, where biogenic inputs are dominant, this ratio is ~2. As biogenic input decreases (low MSA content) inland, the ratio increases, indicating the presence of alternative sources of nssSO4 2– (crustal, volcanic background) or advection of low-latitude air masses. By plotting total flux as a function of accumulation rate, dry depositional contributions were evaluated for nssSO4 2– and MSA in the Ross Sea and Pacific Ocean sectors. Non-sea-salt sulphate wet deposition prevails at sites where the accumulation rate (expressed as water equivalent) is higher than 70 kgm–2 a–1 (Ross Sea sector) or 370 kgm–2 a–1 (Pacific Ocean sector). MSA threshold values in these sectors are respectively 90 and 220 kgm–2 a–1.
Journal of Geophysical Research | 2002
Barbara Stenni; Marco Proposito; Roberto Gragnani; O. Flora; Jean Jouzel; S. Falourd; Massimo Frezzotti
Climate Dynamics | 2004
Massimo Frezzotti; Michel Pourchet; O. Flora; S. Gandolfi; Stefano Urbini; Christian Vincent; Silvia Becagli; Roberto Gragnani; Marco Proposito; Mirko Severi; Rita Traversi; Roberto Udisti; Michel Fily
Journal of Geophysical Research | 2007
Massimo Frezzotti; Stefano Urbini; Marco Proposito; Claudio Scarchilli; S. Gandolfi