Marcus J. Curtis-Long
Brandeis University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marcus J. Curtis-Long.
Phytochemistry | 2011
Hyung Won Ryu; Jung Keun Cho; Marcus J. Curtis-Long; Heung Joo Yuk; Young-Soo Kim; Sunin Jung; Young Suk Kim; Byong Won Lee; Ki Hun Park
An ethanol extract of the fruit case of Garcinia mangostan, whose most abundant chemical species are xanthones, showed potent α-glucosidase inhibitory activity (IC(50)=3.2 μg/ml). A series of isolated xanthones (1-16) demonstrated modest to high inhibition of α-glucosidase with IC(50) values of 1.5-63.5 μM. In particular, one hitherto unknown xanthone 16 has a very rare 2-oxoethyl group on C-8. Kinetic enzymatic assays with a p-nitrophenyl glucopyranoside indicated that one of them, compound (9) exhibited the highest activity (K(i)=1.4 μM) and mixed inhibition. Using, a physiologically relevant substrate, maltose, as substrate, many compounds (6, 9, 14, and 15) also showed potent inhibition which ranged between 17.5 and 53.5 μM and thus compared favorably with deoxynojirimycin (IC(50)=68.8 μM). Finally, the actual pharmacological potential of the ethanol extract was demonstrated by showing that it could elicit reduction of postprandial blood glucose levels. Furthermore, the most active α-glucosidase inhibitors (6, 9, and 14) were proven to be present in high quantities in the native seedcase by a HPLC chromatogram.
Bioorganic & Medicinal Chemistry | 2014
Yan Wang; Marcus J. Curtis-Long; Byong Won Lee; Heung Joo Yuk; Dae Wook Kim; Xue Fei Tan; Ki Hun Park
Flemingia philippinensis is used as a foodstuff or medicinal plant in the tropical regions of China. The methanol (95%) extract of the roots of this plant showed potent tyrosinase inhibition (80% inhibition at 30μg/ml). Activity-guided isolation yielded six polyphenols that inhibited both the monophenolase (IC50=1.01-18.4μM) and diphenolase (IC50=5.22-84.1μM) actions of tyrosinase. Compounds 1-6 emerged to be three new polyphenols and three known flavanones, flemichin D, lupinifolin and khonklonginol H. The new compounds (1-3) were identified as dihydrochalcones which we named fleminchalcones (A-C), respectively. The most potent inhibitor, dihydrochalcone (3) showed significant inhibitions against both the monophenolase (IC50=1.28μM) and diphenolase (IC50=5.22μM) activities of tyrosinase. Flavanone (4) possessing a resorcinol group also inhibited monophenolase (IC50=1.79μM) and diphenolase (IC50=7.48μM) significantly. In kinetic studies, all isolated compounds behaved as competitive inhibitors. Fleminchalcone A was found to have simple reversible slow-binding inhibition against monophenolase.
Food Chemistry | 2014
Dae Wook Kim; Marcus J. Curtis-Long; Heung Joo Yuk; Yan Wang; Yeong Hun Song; Seong Hun Jeong; Ki Hun Park
Angelica keiskei is used as popular functional food stuff. However, quantitative analysis of this plants metabolites has not yet been disclosed. The principal phenolic compounds (1-16) within A. keiskei were isolated, enabling us to quantify the metabolites within different parts of the plant. The specific quantification of metabolites (1-16) was accomplished by multiple reaction monitoring (MRM) using a quadruple tandem mass spectrometer. The limit of detection and limit of quantitation were calculated as 0.4-44 μg/kg and 1.5-148 μg/kg, respectively. Abundance and composition of these metabolites varied significantly across different parts of plant. For example, the abundance of chalcones (12-16) decreased as follows: root bark (10.51 mg/g)>stems (8.52 mg/g)>leaves (2.63 mg/g)>root cores (1.44 mg/g). The chalcones were found to be responsible for the xanthine oxidase (XO) inhibition shown by this plant. The most potent inhibitor, xanthoangelol inhibited XO with an IC50 of 8.5 μM. Chalcones (12-16) exhibited mixed-type inhibition characteristics.
Food Chemistry | 2012
Hyung Won Ryu; Marcus J. Curtis-Long; Sunin Jung; Il Yun Jeong; Dong Sub Kim; Kyu Young Kang; Ki Hun Park
It is necessary to develop food additives to help treat chronic disorders like neurodegenerative diseases from medicinal plants. Ethanol extracts of paper mulberry were found to display significant inhibition against cholinesterases, enzymes that are strongly linked with Alzheimers disease (AD). The active components were identified as prenylated flavonols (2-4) that inhibited two related human cholinesterases in a dose-dependent manner, with IC50s ranging between 0.8 and 3.1μM and between 0.5 and 24.7μM against human acetylcholinesterase (hAChE) and butylcholinesterase (BChE), respectively. Prenyl groups within these flavonols were found to play a critical role for inhibition because the parent compound 1, quercetin, was inactive (IC50>500μM) towards the target enzymes. Flavonols (2-4) showed mixed inhibition kinetics as well as slow and time-dependent reversible inhibition toward hAChE. The affinity between protein and inhibitors was investigated using fluorescence quenching. The affinity constants (KSA) of inhibitors increased in proportion to their inhibitory potencies.
Bioorganic & Medicinal Chemistry Letters | 2011
Jung Keun Cho; Young Bae Ryu; Marcus J. Curtis-Long; Ji Young Kim; Doman Kim; Sun Lee; Woo Song Lee; Ki Hun Park
The action of β-secretase is strongly tied to the onset of Alzheimers disease. The development of inhibitors of β-secretase is thus critical to combating this disease, which threatens an ever increasing number of the population and grows in importance as the population ages. Herein we show that flavones from Morus lhou potently inhibit β-secretase. Our aim in this manuscript is to explore the inhibitory kinetics of natural compounds and develop a phamacophore model which details the critical features responsible for inhibitory activity. The IC(50) values of compounds for β-secretase inhibition were determined to range between 3.4 and 146.1 μM. Prenylated flavone 2 (IC(50)=3.4 μM) was 20 times more effective than its parent compound, noratocarpetin 1 (IC(50)=60.6 μM). The stronger activity was related with resorcinol moiety on B-ring and isoprenyl functionality at C-3. Kinetic analysis shows that the four effective compounds (1-4) have a noncompetitive mode of action. The binding affinity of flavones for β-secretase calculated using in silico docking experiments correlated well with their IC(50) values and noncompetitive inhibition modes.
Bioorganic & Medicinal Chemistry | 2013
Yan Wang; Marcus J. Curtis-Long; Heung Joo Yuk; Dae Wook Kim; Xue Fei Tan; Ki Hun Park
Bacterial neuraminidase (NA) is one of the key enzymes involved in pathogenesis of inflammation during infection. The organic extract of the roots of Flemingia philippinensis showed high bacterial NA inhibitory activity with an IC50 of around 5μg/mL. Activity-guided separation of the methanol extract yielded nine prenylated isoflavones together with the novel species isoflavone (2) which was given the name flemingsin. Isolated prenylated isoflavones (1-9) were evaluated for NA inhibition and their IC50 values were determined to range between 0.30 and 56.8μM. The most potent inhibitor 4 (IC50=300nM, Ki=130nM) features a catechol motif in the B-ring and a furan in the A-ring. Structure-activity analysis also showed a 4-hydroxyl group within the B-ring was essential for NA inhibitory activity, because isoflavone (9) having protected 4-hydroxyl group was much less potent than its hydroxylated counterpart. All neuraminidase compounds screened were found to be reversible noncompetitive inhibitors. Furthermore, the most active NA inhibitors (1-9) were proven to be present in the native roots in high quantities by HPLC and LC-DAD-ESI/MS.
Bioorganic & Medicinal Chemistry | 2013
Jung Keun Cho; Marcus J. Curtis-Long; Kon Ho Lee; Dae Wook Kim; Hyung Won Ryu; Heung Joo Yuk; Ki Hun Park
Abstract SARS-CoV papain-like protease (PLpro) is an important antiviral target due to its key roles in SARS virus replication. The MeOH extracts of the fruits of the Paulownia tree yielded many small molecules capable of targeting PLpro. Five of these compounds were new geranylated flavonoids, tomentin A, tomentin B, tomentin C, tomentin D, tomentin E (1–5). Structure analysis of new compounds (1–5) by NMR showed that they all contain a 3,4-dihydro-2H-pyran moiety. This chemotype is very rare and is derived from cyclization of a geranyl group with a phenol functionality. Most compounds (1–12) inhibited PLpro in a dose dependent manner with IC50’s raging between 5.0 and 14.4μM. All new compounds having the dihydro-2H-pyran group showed better inhibition than their parent compounds (1 vs 11, 2 vs 9, 4 vs 12, 5 vs 6). In kinetic studies, 1–12 emerged to be reversible, mixed inhibitors.
Food and Chemical Toxicology | 2011
Young-Soo Kim; Young Bae Ryu; Marcus J. Curtis-Long; Heung Joo Yuk; Jung Keun Cho; Jun Young Kim; Kwang Dong Kim; Woo Song Lee; Ki Hun Park
Neuraminidase is a proven target in anti-viral drug development. It also appears to be important for infection by certain pathogenic bacteria and has been implicated in biofilm formation. Based on activity-guided fractionation, the acetone extract of Amorpha fruticosa roots gave four flavanones 1-4 and three rotenoids 5-7 which were identified as amoradicin (1), amorisin (2), isoamoritin (3), amoricin (4), amorphigeni (5), dalbinol (6), and 6-ketodehydroamorphigenin (7), respectively. All isolated inhibitors showed strong neuraminidase inhibition with IC₅₀s between 0.12 and 22.03 μM. In particular, amorisin 2 exhibited 120 nM IC(₅₀, which is 30-fold more potent than the positive control, quercetin. In addition, this is the first report detailing rotenoids (IC₅₀ = 8.34-16.74 μM) exhibiting neuraminidase inhibition. Kinetic analysis revealed that all inhibitors were noncompetitive. The most active neuraminidase inhibitors (2, 3, 5, 6) were proven to be present in the native root in high quantities by HPLC. Finally, at concentrations where no toxicity was observed, 3 and 6 inhibited Pseudomonas aeruginosa biofilm production. 29.7% and 21.0% inhibition respectively was observed at 25 μΜ.
Journal of Enzyme Inhibition and Medicinal Chemistry | 2008
Young Bae Ryu; T. J. Ha; Marcus J. Curtis-Long; Hyung Won Ryu; S. W. Gal; Ki-Hun Park
Five flavones displaying tyrosinase inhibitory activity were isolated from the stem barks of Morus lhou (S.) Koidz., a cultivated edible plant. The isolated compounds were identified as mormin (1), cyclomorusin (2), morusin (3), kuwanon C (4), and norartocarpetin (5). Mormin (1) was characterized as a new flavone possesing a 3-hydroxymethyl-2-butenyl at C-3. The inhibitory potencies of these flavonoids toward monophenolase activity of mushroom tyrosinase were investigated. The IC50 values of compounds 1–5 for monophenolase activity were determined to be 0.088, 0.092, 0.250, 0.135 mM, and 1.2 μM, respectively. Mormin (1), cyclomorusin (2), kuwanon C (4) and norartocarpetin (5) exhibited competitive inhibition characteristics. Interestingly norartocarpetin (5) showed a time–dependent inhibition against oxidation of l–tyrosine: it also operated under the enzyme isomerization model (k5 = 0.8424 min− 1, k6 = 0.0576 min− 1, = 1.354 μM).
Food and Chemical Toxicology | 2013
Heung Joo Yuk; Hyung Won Ryu; Seong Hun Jeong; Marcus J. Curtis-Long; Hye Jin Kim; Yan Wang; Yeong Hun Song; Ki Hun Park
Bacterial neuraminidase (NA) is a lynch pin enzyme in the formation of biofilms. Thus NA continues to be one of the key enzymes targeted by bacterial infection. The purpose of this manuscript is to communicate four new naturally derived inhibitors of neuraminidase (IC50s 3.7-24.4μM). All these active species (1-4) contained a resveratrol chemotype, however resveratrol itself was inactive (IC50>100μM). 1-4 were isolated from the 60% aqueous ethanol extract of seeds of Paeonia lactiflora, which exhibited potent neuraminidase inhibition. Purification of the extracts yielded four chiral polyphenols, suffruticosol A (1), suffruticosol B (2), trans-ε-viniferin (3), and trans-gnetin H (4). Mechanistic analysis of 1-4s inhibition showed that they were all reversible, noncompetitive inhibitors. Trans-ε-viniferin (3) underwent trans-cis isomerization, which led to a reduction in inhibition potency. This correlates with the fact that the cis-isomer is a weaker inhibitor of neuraminidase than the trans-isomer. Importantly, significantly different optical rotations ([α]D) compared to previous reports were found for suffruticosols A (+95 vs -34) and B (+136 vs +13). These two species are the most important standard metabolites in the whole paeoniaceae family and therefore correction of this error is important.