Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark Y. Chiang is active.

Publication


Featured researches published by Mark Y. Chiang.


Journal of Experimental Medicine | 2012

Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma

Mark J. Kiel; Thirunavukkarasu Velusamy; Bryan L. Betz; Lili Zhao; Helmut G. Weigelin; Mark Y. Chiang; David R. Huebner-Chan; Nathanael G. Bailey; David T. Yang; Govind Bhagat; Roberto N. Miranda; David W. Bahler; L. Jeffrey Medeiros; Megan S. Lim; Kojo S.J. Elenitoba-Johnson

NOTCH2 mutations in splenic marginal zone lymphoma are associated with poor prognosis.


Genes & Development | 2009

Pre-TCR signaling inactivates Notch1 transcription by antagonizing E2A

Yumi Yashiro-Ohtani; Yiping He; Takuya Ohtani; Mary Elizabeth Jones; Olga Shestova; Lanwei Xu; Terry C. Fang; Mark Y. Chiang; Andrew M. Intlekofer; Stephen C. Blacklow; Yuan Zhuang

Precise control of the timing and magnitude of Notch signaling is essential for the normal development of many tissues, but the feedback loops that regulate Notch are poorly understood. Developing T cells provide an excellent context to address this issue. Notch1 signals initiate T-cell development and increase in intensity during maturation of early T-cell progenitors (ETP) to the DN3 stage. As DN3 cells undergo beta-selection, during which cells expressing functionally rearranged TCRbeta proliferate and differentiate into CD4(+)CD8(+) progeny, Notch1 signaling is abruptly down-regulated. In this report, we investigate the mechanisms that control Notch1 expression during thymopoiesis. We show that Notch1 and E2A directly regulate Notch1 transcription in pre-beta-selected thymocytes. Following successful beta-selection, pre-TCR signaling rapidly inhibits Notch1 transcription via signals that up-regulate Id3, an E2A inhibitor. Consistent with a regulatory role for Id3 in Notch1 down-regulation, post-beta-selected Id3-deficient thymocytes maintain Notch1 transcription, whereas enforced Id3 expression decreases Notch1 expression and abrogates Notch1-dependent T-cell survival. These data provide new insights into Notch1 regulation in T-cell progenitors and reveal a direct link between pre-TCR signaling and Notch1 expression during thymocyte development. Our findings also suggest new strategies for inhibiting Notch1 signaling in pathologic conditions.


Molecular and Cellular Biology | 2006

Identification of a Conserved Negative Regulatory Sequence That Influences the Leukemogenic Activity of NOTCH1

Mark Y. Chiang; Mina L. Xu; Gavin Histen; Olga Shestova; Monideepa Roy; Yunsun Nam; Stephen C. Blacklow; David B. Sacks

ABSTRACT NOTCH1 is a large type I transmembrane receptor that regulates normal T-cell development via a signaling pathway that relies on regulated proteolysis. Ligand binding induces proteolytic cleavages in NOTCH1 that release its intracellular domain (ICN1), which translocates to the nucleus and activates target genes by forming a short-lived nuclear complex with two other proteins, the DNA-binding factor CSL and a Mastermind-like (MAML) coactivator. Recent work has shown that human T-ALL is frequently associated with C-terminal NOTCH1 truncations, which uniformly remove sequences lying between residues 2524 and 2556. This region includes the highly conserved sequence WSSSSP (S4), which based on its amino acid content appeared to be a likely site for regulatory serine phosphorylation events. We show here that the mutation of the S4 sequence leads to hypophosphorylation of ICN1; increased NOTCH1 signaling; and the stabilization of complexes containing ICN1, CSL, and MAML1. Consistent with these in vitro studies, mutation of the WSSSSP sequence converts nonleukemogenic weak gain-of-function NOTCH1 alleles into alleles that cause aggressive T-ALLs in a murine bone marrow transplant model. These studies indicate that S4 is an important negative regulatory sequence and that the deletion of S4 likely contributes to the development of human T-ALL.


Nature Medicine | 2012

NOTCH1 promotes T cell leukemia-initiating activity by RUNX-mediated regulation of PKC-θ and reactive oxygen species

Vincenzo Giambra; Christopher R Jenkins; Hongfang Wang; Sonya H Lam; Olena O Shevchuk; Oksana Nemirovsky; Carol Wai; Sam Gusscott; Mark Y. Chiang; R. Keith Humphries; Connie J. Eaves; Andrew P. Weng

Reactive oxygen species (ROS), a by-product of cellular metabolism, damage intracellular macromolecules and, in excess, can promote normal hematopoietic stem cell differentiation and exhaustion1–3. However, mechanisms that regulate ROS levels in leukemia-initiating cells (LICs) and the biological role of ROS in these cells remain largely unknown. We show here the ROSlow subset of CD44+ cells in T-cell acute lymphoblastic leukemia (T-ALL), a malignancy of immature T-cell progenitors, to be highly enriched in the most aggressive LICs, and that ROS are maintained at low levels by downregulation of protein kinase C theta (PKCθ). Strikingly, primary mouse T-ALLs lacking PKCθ show improved LIC activity whereas enforced PKCθ expression in both mouse and human primary T-ALLs compromised LIC activity. We also demonstrate that PKCθ is positively regulated by RUNX1, and that NOTCH1, which is frequently activated by mutation in T-ALL4–6 and required for LIC activity in both mouse and human models7,8, downregulates PKCθ and ROS via a novel pathway involving induction of RUNX3 and subsequent repression of RUNX1. These results reveal key functional roles for PKCθ and ROS in T-ALL and suggest that aggressive biological behavior in vivo could be limited by therapeutic strategies that promote PKCθ expression/activity or ROS accumulation.Reactive oxygen species (ROS), a byproduct of cellular metabolism, damage intracellular macromolecules and, when present in excess, can promote normal hematopoietic stem cell differentiation and exhaustion. However, mechanisms that regulate the amount of ROS in leukemia-initiating cells (LICs) and the biological role of ROS in these cells are largely unknown. We show here that the ROSlow subset of CD44+ cells in T cell acute lymphoblastic leukemia (T-ALL), a malignancy of immature T cell progenitors, is highly enriched in the most aggressive LICs and that ROS accumulation is restrained by downregulation of protein kinase C θ (PKC-θ). Notably, primary mouse T-ALLs lacking PKC-θ show improved LIC activity, whereas enforced PKC-θ expression in both mouse and human primary T-ALLs compromised LIC activity. We also show that PKC-θ is regulated by a new pathway in which NOTCH1 induces runt-related transcription factor 3 (RUNX3), RUNX3 represses RUNX1 and RUNX1 induces PKC-θ. NOTCH1, which is frequently activated by mutation in T-ALL and required for LIC activity in both mouse and human models, thus acts to repress PKC-θ. These results reveal key functional roles for PKC-θ and ROS in T-ALL and suggest that aggressive biological behavior in vivo could be limited by therapeutic strategies that promote PKC-θ expression or activity, or the accumulation of ROS.


Blood | 2013

Divergent effects of supraphysiologic Notch signals on leukemia stem cells and hematopoietic stem cells

Mark Y. Chiang; Olga Shestova; Lanwei Xu

The leukemia stem cell (LSC) hypothesis proposes that a subset of cells in the bulk leukemia population propagates the leukemia.We tested the LSC hypothesis in a mouse model of Notch-induced T-cell acute lymphoblastic leukemia (T-ALL) in which the tumor cells were largely CD4+ CD8+ T cells. LSC activity was enriched but rare in the CD8+ CD4 HSA(hi) immature single-positive T-cell subset. Although our murine T-ALL model relies on transduction of HSCs, we were unable to isolate Notch-activated HSCs to test for LSC activity. Further analysis showed that Notch activation in HSCs caused an initial expansion of hematopoietic and T-cell progenitors and loss of stem cell quiescence, which was followed by progressive loss of long-term HSCs and T-cell production over several weeks. Similar results were obtained in a conditional transgenic model in which Notch activation is induced in HSCs by Cre recombinase. We conclude that although supraphysiologic Notch signaling in HSCs promotes LSC activity in T-cell progenitors, it extinguishes self-renewal of LT-HSCs. These results provide further evidence for therapeutically targeting T-cell progenitors in T-ALL while also underscoring the need to tightly regulate Notch signaling to expand normal HSC populations for clinical applications.


Cancer Research | 2013

Convergence of the ZMIZ1 and NOTCH1 Pathways at C-MYC in Acute T Lymphoblastic Leukemias

Lesley A. Rakowski; Derek D. Garagiola; Choi M. Li; Margaret Decker; Sarah Caruso; Morgan Jones; Rork Kuick; Tomasz Cierpicki; Ivan Maillard; Mark Y. Chiang

Activating NOTCH1 mutations are found in 50% to 60% of human T-cell acute lymphoblastic leukemia (T-ALL) samples. In mouse models, these mutations generally fail to induce leukemia. This observation suggests that NOTCH1 activation must collaborate with other genetic events. Mutagenesis screens previously implicated ZMIZ1 as a possible NOTCH1 collaborator in leukemia. ZMIZ1 is a transcriptional coactivator of the protein inhibitor of activated STAT (PIAS)-like family. Its role in oncogenesis is unknown. Here, we show that activated NOTCH1 and ZMIZ1 collaborate to induce T-ALL in mice. ZMIZ1 and activated NOTCH1 are coexpressed in a subset of human T-ALL patients and cell lines. ZMIZ1 inhibition slowed growth and sensitized leukemic cells to corticosteroids and NOTCH inhibitors. Gene expression profiling identified C-MYC, but not other NOTCH-regulated genes, as an essential downstream target of ZMIZ1. ZMIZ1 functionally interacts with NOTCH1 to promote C-MYC transcription and activity. The mechanism does not involve the NOTCH pathway and appears to be indirect and mediated independently of canonical PIAS functions through a novel N-terminal domain. Our study shows the importance of identifying genetic collaborations between parallel leukemic pathways that may be therapeutically targeted. They also raise new inquiries into potential NOTCH-ZMIZ1 collaboration in a variety of C-MYC-driven cancers.


International Journal of Hematology | 2011

Critical roles of NOTCH1 in acute T-cell lymphoblastic leukemia

Hudan Liu; Mark Y. Chiang

NOTCH1 plays a central role in T-cell development and, when aberrantly activated, in acute T-cell lymphoblastic leukemia (T-ALL). As a transmembrane receptor that is ultimately converted into a transcription factor, NOTCH1 directly activates a spectrum of target genes, which function to mediate NOTCH1 signaling in normal or transformed T cells. During physiologic T-cell development, NOTCH1 has important functions in cell fate determination, proliferation, survival and metabolism. Activating NOTCH1 mutations occur in more than half of human patients with T-ALL, suggesting an important role for aberrant NOTCH1 signaling in the pathogenesis of this disease. Inhibiting NOTCH1 signaling in patient-derived cell lines and murine T-ALLs leads to growth arrest and/or apoptosis suggesting that NOTCH1 inhibitors can improve T-ALL treatment. However, there are challenges to translate NOTCH1 inhibitors to the clinic because of toxicity and resistance. This review focuses on molecular mechanisms of oncogenic NOTCH1 signaling, molecular and functional analysis of NOTCH1 transcriptional targets in T-ALL, and recent advances in therapeutic targeting of NOTCH1.


Journal of Immunology | 2001

Role for Transcription Pax5A Factor in Maintaining Commitment to the B Cell Lineage by Selective Inhibition of Granulocyte-Macrophage Colony-Stimulating Factor Receptor Expression

Mark Y. Chiang; John G. Monroe

During early B lymphopoiesis, developing B cells maintain lineage commitment despite the local presence of myeloid lineage-promoting cytokines such as GM-CSF and IL-3. Previous observations suggest that the B cell-specific transcription factor Pax5A (paired box 5A transcription factor) plays a role in maintaining B cell lineage commitment by limiting expansion and survival of early IL-3/GM-CSF-dependent myeloid lineage cells. To define a mechanism by which Pax5A can exert these inhibitory effects on myeloid lineage differentiation, an inducible form of the Pax5A protein was expressed in the myeloid cell line FDC-P1. This cell line models myeloid progenitors in that it responds to the survival and growth-potentiating effects of IL-3 and GM-CSF. We observed that enforced expression of Pax5A selectively suppressed proliferation in response to GM-CSF, but not IL-3. This effect was associated with specific down-regulation of GM-CSFR α-chain, but not β-chain expression. These data provide a molecular mechanism to enforce commitment to the B cell lineage despite the presence of GM-CSF, a factor that has been shown to convert early developing B cells to the myeloid lineage. Furthermore, they indicate a role for B cell Pax5A expression in maintaining rather than directing commitment to the B cell lineage.


PLOS ONE | 2011

Transient Responses to NOTCH and TLX1/HOX11 Inhibition in T-Cell Acute Lymphoblastic Leukemia/Lymphoma

Lesley A. Rakowski; Erica A. Lehotzky; Mark Y. Chiang

To improve the treatment strategies of T-cell acute lymphoblastic leukemia/lymphoma (T-ALL), further efforts are needed to identify therapeutic targets. Dysregulated expression of HOX-type transcription factors occurs in 30–40% of cases of T-ALL. TLX1/HOX11 is the prototypical HOX-type transcription factor. TLX1 may be an attractive therapeutic target because mice that are deficient in TLX1 are healthy. To test this possibility, we developed a conditional doxycycline-regulated mouse model of TLX1-initiated T-ALL. TLX1 induced T-ALL after ∼5–7 months with penetrance of 15–60%. Similar to human TLX1-type T-ALLs, the TLX1-induced tumors were arrested at the cortical stage of T-cell development and acquired activating NOTCH1 mutations. Inhibition of NOTCH signaling abrogated growth of cell lines derived from the TLX1-induced tumors. NOTCH inhibition also transiently delayed leukemia progression in vivo. Suppression of TLX1 expression slowed the growth of TLX1 tumor cell lines. Suppression of TLX1 in vivo also transiently delayed leukemia progression. We have shown that TLX1 functions as a T-cell oncogene that is active during both the induction and the maintenance phases of leukemia. However, the effect of suppressing NOTCH or TLX1 was transient. The tumors eventually “escaped” from inhibition. These data imply that the biological pathways and gene sets impacted by TLX1 and NOTCH have largely lost their importance in the fully established tumor. They have been supplanted by stronger oncogenic pathways. Although TLX1 or NOTCH inhibitors may not be effective as single agents, they may still contribute to combination therapy for TLX1-driven acute leukemia.


Journal of Immunology | 2015

Cutting Edge: Codeletion of the Ras GTPase-Activating Proteins (RasGAPs) Neurofibromin 1 and p120 RasGAP in T Cells Results in the Development of T Cell Acute Lymphoblastic Leukemia

Beth A. Lubeck; Philip E. Lapinski; Jennifer A. Oliver; Olga Ksionda; Luis F. Parada; Yuan Zhu; Ivan Maillard; Mark Y. Chiang; Jeroen P. Roose; Philip D. King

Ras GTPase-activating proteins (RasGAPs) inhibit signal transduction initiated through the Ras small GTP-binding protein. However, which members of the RasGAP family act as negative regulators of T cell responses is not completely understood. In this study, we investigated potential roles for the RasGAPs RASA1 and neurofibromin 1 (NF1) in T cells through the generation and analysis of T cell–specific RASA1 and NF1 double-deficient mice. In contrast to mice lacking either RasGAP alone in T cells, double-deficient mice developed T cell acute lymphoblastic leukemia/lymphoma, which originated at an early point in T cell development and was dependent on activating mutations in the Notch1 gene. These findings highlight RASA1 and NF1 as cotumor suppressors in the T cell lineage.

Collaboration


Dive into the Mark Y. Chiang's collaboration.

Top Co-Authors

Avatar

Olga Shestova

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lanwei Xu

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qing Wang

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ran Yan

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yiran Liu

University of Michigan

View shared research outputs
Researchain Logo
Decentralizing Knowledge