Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lanwei Xu is active.

Publication


Featured researches published by Lanwei Xu.


Immunity | 1999

Notch1 Expression in Early Lymphopoiesis Influences B versus T Lineage Determination

John C. Pui; David Allman; Lanwei Xu; Susan DeRocco; Fredrick G. Karnell; Sonia Bakkour; Julia Y Lee; Tom Kadesch; Richard R. Hardy

Notch receptors regulate fate decisions in many cells. One outcome of Notch signaling is differentiation of bipotential precursors into one cell type versus another. To investigate consequences of Notch1 expression in hematolymphoid progenitors, mice were reconstituted with bone marrow (BM) transduced with retroviruses encoding a constitutively active form of Notch1. Although neither granulocyte or monocyte differentiation were appreciably affected, lymphopoiesis was dramatically altered. As early as 3 weeks following transplantation, mice receiving activated Notch1-transduced BM contained immature CD4+ CD8+ T cells in the BM and exhibited a simultaneous block in early B cell lymphopoiesis. These results suggest that Notch1 provides a key regulatory signal in determining T lymphoid versus B lymphoid lineage decisions, possibly by influencing lineage commitment from a common lymphoid progenitor cell.


Nature Medicine | 2000

Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling

Barbara Varnum-Finney; Lanwei Xu; Carolyn Brashem-Stein; Cynthia Nourigat; David Flowers; Sonia Bakkour; Irwin D. Bernstein

Hematopoietic stem cells give rise to progeny that either self-renew in an undifferentiated state or lose self-renewal capabilities and commit to lymphoid or myeloid lineages. Here we evaluated whether hematopoietic stem cell self-renewal is affected by the Notch pathway. Notch signaling controls cell fate choices in both invertebrates and vertebrates by inhibiting certain differentiation pathways, thereby permitting cells to either differentiate along an alternative pathway or to self-renew. Notch receptors are present in hematopoietic precursors and Notch signaling enhances the in vitro generation of human and mouse hematopoietic precursors, determines T- or B-cell lineage specification from a common lymphoid precursor and promotes expansion of CD8+ cells. Here, we demonstrate that constitutive Notch1 signaling in hematopoietic cells established immortalized, cytokine-dependent cell lines that generated progeny with either lymphoid or myeloid characteristics both in vitro and in vivo. These data support a role for Notch signaling in regulating hematopoietic stem cell self-renewal. Furthermore, the establishment of clonal, pluripotent cell lines provides the opportunity to assess mechanisms regulating stem cell commitment and demonstrates a general method for immortalizing stem cell populations for further analysis.


Nature Immunology | 2005

Notch signaling controls the generation and differentiation of early T lineage progenitors

Arivazhagan Sambandam; Ivan Maillard; Valerie P. Zediak; Lanwei Xu; Rachel M. Gerstein; Avinash Bhandoola

Signaling by the transmembrane receptor Notch is critical for T lineage development, but progenitor subsets that first receive Notch signals have not been defined. Here we identify an immature subset of early T lineage progenitors (ETPs) in the thymus that expressed the tyrosine kinase receptor Flt3 and had preserved B lineage potential at low progenitor frequency. Notch signaling was active in ETPs and was required for generation of the ETP population. Additionally, Notch signals contributed to the subsequent differentiation of ETPs. In contrast, multipotent hematopoietic progenitors circulated in the blood even in the absence of Notch signaling, suggesting that critical Notch signals during early T lineage development are delivered early after thymic entry.


Cell Stem Cell | 2008

Canonical notch signaling is dispensable for the maintenance of adult hematopoietic stem cells.

Ivan Maillard; Ute Koch; Alexis Dumortier; Olga Shestova; Lanwei Xu; Hong Sai; Seth E. Pross; Avinash Bhandoola; Freddy Radtke

Gain-of-function experiments have demonstrated the potential of Notch signals to expand primitive hematopoietic progenitors, but whether Notch physiologically regulates hematopoietic stem cell (HSC) homeostasis in vivo is unclear. To answer this question, we evaluated the effect of global deficiencies of canonical Notch signaling in rigorous HSC assays. Hematopoietic progenitors expressing dominant-negative Mastermind-like1 (DNMAML), a potent inhibitor of Notch-mediated transcriptional activation, achieved stable long-term reconstitution of irradiated hosts and showed a normal frequency of progenitor fractions enriched for long-term HSCs. Similar results were observed with cells lacking CSL/RBPJ, a DNA-binding factor that is required for canonical Notch signaling. Notch-deprived progenitors provided normal long-term reconstitution after secondary competitive transplantation. Furthermore, Notch target genes were expressed at low levels in primitive hematopoietic progenitors. Taken together, these results rule out an essential physiological role for cell-autonomous canonical Notch signals in HSC maintenance.


Molecular and Cellular Biology | 2000

Essential roles for ankyrin repeat and transactivation domains in induction of T-cell leukemia by notch1

Lanwei Xu; Fredrick G. Karnell; Vytas Patriub; John C. Pui

ABSTRACT Notch receptors participate in a conserved signaling pathway that controls the development of diverse tissues and cell types, including lymphoid cells. Signaling is normally initiated through one or more ligand-mediated proteolytic cleavages that permit nuclear translocation of the intracellular portion of the Notch receptor (ICN), which then binds and activates transcription factors of the Su(H)/CBF1 family. Several mammalian Notch receptors are oncogenic when constitutively active, including Notch1, a gene initially identified based on its involvement in a (7;9) chromosomal translocation found in sporadic T-cell lymphoblastic leukemias and lymphomas (T-ALL). To investigate which portions of ICN1 contribute to transformation, we performed a structure-transformation analysis using a robust murine bone marrow reconstitution assay. Both the ankyrin repeat and C-terminal transactivation domains were required for T-cell leukemogenesis, whereas the N-terminal RAM domain and a C-terminal domain that includes a PEST sequence were nonessential. Induction of T-ALL correlated with the transactivation activity of each Notch1 polypeptide when fused to the DNA-binding domain of GAL4, with the exception of polypeptides deleted of the ankyrin repeats, which lacked transforming activity while retaining strong transactivation activity. Transforming polypeptides also demonstrated moderate to strong activation of the Su(H)/CBF1-sensitive HES-1 promoter, while polypeptides with weak or absent activity on this promoter failed to cause leukemia. These experiments define a minimal transforming region for Notch1 in T-cell progenitors and suggest that leukemogenic signaling involves recruitment of transcriptional coactivators to ICN1 nuclear complexes.


Immunity | 2002

Deltex1 redirects lymphoid progenitors to the B cell lineage by antagonizing Notch1.

David J. Izon; Yiping He; Andrew P. Weng; Fredrick G. Karnell; Vytas Patriub; Lanwei Xu; Sonia Bakkour; Carlos G. Rodriguez; David Allman

Notch1 signaling drives T cell development at the expense of B cell development from a common precursor, an effect that is dependent on a C-terminal Notch1 transcriptional activation domain. The function of Deltex1, initially identified as a positive modulator of Notch function in a genetic screen in Drosophila, is poorly understood. We now demonstrate that, in contrast to Notch1, enforced expression of Deltex1 in hematopoietic progenitors results in B cell development at the expense of T cell development in fetal thymic organ culture and in vivo. Consistent with these effects, Deltex1 antagonizes Notch1 signaling in transcriptional reporter assays by inhibiting coactivator recruitment. These data suggest that a balance of inductive Notch1 signals and inhibitory signals mediated through Deltex1 and other modulators regulate T-B lineage commitment.


Immunity | 2001

Notch1 Regulates Maturation of CD4+ and CD8+ Thymocytes by Modulating TCR Signal Strength

David J. Izon; Jennifer A. Punt; Lanwei Xu; Fredrick G. Karnell; David Allman; Peggy S. Myung; Nancy J. Boerth; John C. Pui; Gary A. Koretzky

Notch signaling regulates cell fate decisions in multiple lineages. We demonstrate in this report that retroviral expression of activated Notch1 in mouse thymocytes abrogates differentiation of immature CD4+CD8+ thymocytes into both CD4 and CD8 mature single-positive T cells. The ability of Notch1 to inhibit T cell development was observed in vitro and in vivo with both normal and TCR transgenic thymocytes. Notch1-mediated developmental arrest was dose dependent and was associated with impaired thymocyte responses to TCR stimulation. Notch1 also inhibited TCR-mediated signaling in Jurkat T cells. These data indicate that constitutively active Notch1 abrogates CD4+ and CD8+ maturation by interfering with TCR signal strength and provide an explanation for the physiological regulation of Notch expression during thymocyte development.


Journal of Immunology | 2003

Notch Signaling Augments T Cell Responsiveness by Enhancing CD25 Expression

Scott H. Adler; Elise Chiffoleau; Lanwei Xu; Nicole M. Dalton; Jennifer M. Burg; Andrew D. Wells; Michael S. Wolfe; Laurence A. Turka

Notch receptors signal through a highly conserved pathway to influence cell fate decisions. Notch1 is required for T lineage commitment; however, a role for Notch signaling has not been clearly defined for the peripheral T cell response. Notch gene expression is induced, and Notch1 is activated in primary CD4+ T cells following specific peptide-Ag stimulation. Notch activity contributes to the peripheral T cell response, as inhibition of endogenous Notch activation decreases the proliferation of activated T cells in a manner associated with the diminished production of IL-2 and the expression of the high affinity IL-2R (CD25). Conversely, forced expression of a constitutively active Notch1 in primary T cells results in increased surface expression of CD25, and renders these cells more sensitive to both cognate Ag and IL-2, as measured by cell division. These data suggest an important role for Notch signaling during CD4+ T cell responses, which operates through augmenting a positive feedback loop involving IL-2 and its high affinity receptor.


Journal of Experimental Medicine | 2006

The requirement for Notch signaling at the β-selection checkpoint in vivo is absolute and independent of the pre–T cell receptor

Ivan Maillard; LiLi Tu; Arivazhagan Sambandam; Yumi Yashiro-Ohtani; John M. Millholland; Karen Keeshan; Olga Shestova; Lanwei Xu; Avinash Bhandoola

Genetic inactivation of Notch signaling in CD4−CD8− double-negative (DN) thymocytes was previously shown to impair T cell receptor (TCR) gene rearrangement and to cause a partial block in CD4+CD8+ double-positive (DP) thymocyte development in mice. In contrast, in vitro cultures suggested that Notch was absolutely required for the generation of DP thymocytes independent of pre-TCR expression and activity. To resolve the respective role of Notch and the pre-TCR, we inhibited Notch-mediated transcriptional activation in vivo with a green fluorescent protein–tagged dominant-negative Mastermind-like 1 (DNMAML) that allowed us to track single cells incapable of Notch signaling. DNMAML expression in DN cells led to decreased production of DP thymocytes but only to a modest decrease in intracellular TCRβ expression. DNMAML attenuated the pre-TCR–associated increase in cell size and CD27 expression. TCRβ or TCRαβ transgenes failed to rescue DNMAML-related defects. Intrathymic injections of DNMAML− or DNMAML+ DN thymocytes revealed a complete DN/DP transition block, with production of DNMAML+ DP thymocytes only from cells undergoing late Notch inactivation. These findings indicate that the Notch requirement during the β-selection checkpoint in vivo is absolute and independent of the pre-TCR, and it depends on transcriptional activation by Notch via the CSL/RBP-J–MAML complex.


Genes & Development | 2009

Pre-TCR signaling inactivates Notch1 transcription by antagonizing E2A

Yumi Yashiro-Ohtani; Yiping He; Takuya Ohtani; Mary Elizabeth Jones; Olga Shestova; Lanwei Xu; Terry C. Fang; Mark Y. Chiang; Andrew M. Intlekofer; Stephen C. Blacklow; Yuan Zhuang

Precise control of the timing and magnitude of Notch signaling is essential for the normal development of many tissues, but the feedback loops that regulate Notch are poorly understood. Developing T cells provide an excellent context to address this issue. Notch1 signals initiate T-cell development and increase in intensity during maturation of early T-cell progenitors (ETP) to the DN3 stage. As DN3 cells undergo beta-selection, during which cells expressing functionally rearranged TCRbeta proliferate and differentiate into CD4(+)CD8(+) progeny, Notch1 signaling is abruptly down-regulated. In this report, we investigate the mechanisms that control Notch1 expression during thymopoiesis. We show that Notch1 and E2A directly regulate Notch1 transcription in pre-beta-selected thymocytes. Following successful beta-selection, pre-TCR signaling rapidly inhibits Notch1 transcription via signals that up-regulate Id3, an E2A inhibitor. Consistent with a regulatory role for Id3 in Notch1 down-regulation, post-beta-selected Id3-deficient thymocytes maintain Notch1 transcription, whereas enforced Id3 expression decreases Notch1 expression and abrogates Notch1-dependent T-cell survival. These data provide new insights into Notch1 regulation in T-cell progenitors and reveal a direct link between pre-TCR signaling and Notch1 expression during thymocyte development. Our findings also suggest new strategies for inhibiting Notch1 signaling in pathologic conditions.

Collaboration


Dive into the Lanwei Xu's collaboration.

Top Co-Authors

Avatar

Olga Shestova

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Avinash Bhandoola

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John C. Pui

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge