Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Markus Riegler is active.

Publication


Featured researches published by Markus Riegler.


Cell | 2009

A Wolbachia Symbiont in Aedes aegypti Limits Infection with Dengue, Chikungunya, and Plasmodium

Luciano A. Moreira; Iñaki Iturbe-Ormaetxe; Jason A. L. Jeffery; Guangjin Lu; Alyssa T. Pyke; Lauren M. Hedges; Bruno Coelho Rocha; Sonja Hall-Mendelin; Andrew Day; Markus Riegler; Leon E. Hugo; Karyn N. Johnson; Brian H. Kay; Elizabeth A. McGraw; Andrew F. van den Hurk; Peter A. Ryan; Scott L. O'Neill

Wolbachia are maternally inherited intracellular bacterial symbionts that are estimated to infect more than 60% of all insect species. While Wolbachia is commonly found in many mosquitoes it is absent from the species that are considered to be of major importance for the transmission of human pathogens. The successful introduction of a life-shortening strain of Wolbachia into the dengue vector Aedes aegypti that halves adult lifespan has recently been reported. Here we show that this same Wolbachia infection also directly inhibits the ability of a range of pathogens to infect this mosquito species. The effect is Wolbachia strain specific and relates to Wolbachia priming of the mosquito innate immune system and potentially competition for limiting cellular resources required for pathogen replication. We suggest that this Wolbachia-mediated pathogen interference may work synergistically with the life-shortening strategy proposed previously to provide a powerful approach for the control of insect transmitted diseases.


PLOS Pathogens | 2009

Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress.

Jeremy C. Brownlie; Bodil N. Cass; Markus Riegler; Joris J. Witsenburg; Iñaki Iturbe-Ormaetxe; Elizabeth A. McGraw; Scott L. O'Neill

Wolbachia are ubiquitous inherited endosymbionts of invertebrates that invade host populations by modifying host reproductive systems. However, some strains lack the ability to impose reproductive modification and yet are still capable of successfully invading host populations. To explain this paradox, theory predicts that such strains should provide a fitness benefit, but to date none has been detected. Recently completed genome sequences of different Wolbachia strains show that these bacteria may have the genetic machinery to influence iron utilization of hosts. Here we show that Wolbachia infection can confer a positive fecundity benefit for Drosophila melanogaster reared on iron-restricted or -overloaded diets. Furthermore, iron levels measured from field-collected flies indicated that nutritional conditions in the field were overall comparable to those of flies reared in the laboratory on restricted diets. These data suggest that Wolbachia may play a previously unrecognized role as nutritional mutualists in insects.


Current Biology | 2005

Evidence for a global Wolbachia replacement in Drosophila melanogaster

Markus Riegler; Manpreet Sidhu; Wolfgang J. Miller; Scott L. O'Neill

Wolbachia are maternally inherited intracellular alpha-Proteobacteria found in numerous arthropod and filarial nematode species. They influence the biology of their hosts in many ways. In some cases, they act as obligate mutualists and are required for the normal development and reproduction of the host. They are best known, however, for the various reproductive parasitism traits that they can generate in infected hosts. These include cytoplasmic incompatibility (CI) between individuals of different infection status, the parthenogenetic production of females, the selective killing of male embryos, and the feminization of genetic males. Wolbachia infections of Drosophila melanogaster are extremely common in both wild populations and long-term laboratory stocks. Utilizing the newly completed genome sequence of Wolbachia pipientis wMel, we have identified a number of polymorphic markers that can be used to discriminate among five different Wolbachia variants within what was previously thought to be the single clonal infection of D. melanogaster. Analysis of long-term lab stocks together with wild-caught flies indicates that one of these variants has replaced the others globally within the last century. This is the first report of a global replacement of a Wolbachia strain in an insect host species. The sweep is at odds with current theory that cannot explain how Wolbachia can invade this host species given the observed cytoplasmic incompatibility characteristics of Wolbachia infections in D. melanogaster in the field.


Journal of Bacteriology | 2005

Distribution, Expression, and Motif Variability of Ankyrin Domain Genes in Wolbachia pipientis

Iñaki Iturbe-Ormaetxe; Gaelen R. Burke; Markus Riegler; Scott L. O'Neill

The endosymbiotic bacterium Wolbachia pipientis infects a wide range of arthropods, in which it induces a variety of reproductive phenotypes, including cytoplasmic incompatibility (CI), parthenogenesis, male killing, and reversal of genetic sex determination. The recent sequencing and annotation of the first Wolbachia genome revealed an unusually high number of genes encoding ankyrin domain (ANK) repeats. These ANK genes are likely to be important in mediating the Wolbachia-host interaction. In this work we determined the distribution and expression of the different ANK genes found in the sequenced Wolbachia wMel genome in nine Wolbachia strains that induce different phenotypic effects in their hosts. A comparison of the ANK genes of wMel and the non-CI-inducing wAu Wolbachia strain revealed significant differences between the strains. This was reflected in sequence variability in shared genes that could result in alterations in the encoded proteins, such as motif deletions, amino acid insertions, and in some cases disruptions due to insertion of transposable elements and premature stops. In addition, one wMel ANK gene, which is part of an operon, was absent in the wAu genome. These variations are likely to affect the affinity, function, and cellular location of the predicted proteins encoded by these genes.


Molecular Ecology | 2002

Wolbachia infections and superinfections in cytoplasmically incompatible populations of the European cherry fruit fly Rhagoletis cerasi (Diptera, Tephritidae).

Markus Riegler; Christian Stauffer

Wolbachia is an obligately intracellular, maternally inherited bacterium which has been detected in many arthropods. Wolbachia infections disperse in host populations by mechanisms such as cytoplasmic incompatibility (CI). CI leads to embryonic mortality which occurs when infected males mate with uninfected females or females with a different Wolbachia strain. Populations of the European cherry fruit fly Rhagoletis cerasi (Diptera, Tephritidae) were found to be infected by two different Wolbachia strains, wCer1 and wCer2. Superinfections with both strains occurred throughout southern and central Europe and infections with wCer1 were found in northern, western and eastern Europe. Strong unidirectional CI between European populations of R. cerasi were first reported in the 1970s. From the conformity in the recent geographical distribution of the Wolbachia infections and the CI expression patterns found 25 years ago it was deduced that wCer2 potentially causes CI in R. cerasi. The comparison of the geographical distributions indicated that wCer1 + 2 must have spread into wCer1‐infected populations in some areas. In other regions, a spread of wCer1 + 2 was probably prevented by dispersal barriers. There, a sharp transition from infected to superinfected populations suggested regional isolation between wCer1 and wCer1 + 2‐infected populations.


Applied and Environmental Microbiology | 2004

Wolbachia Transfer from Rhagoletis cerasi to Drosophila simulans: Investigating the Outcomes of Host-Symbiont Coevolution

Markus Riegler; Sylvain Charlat; Christian Stauffer; Hervé Merçot

ABSTRACT Wolbachia is an endosymbiont of diverse arthropod lineages that can induce various alterations of host reproduction for its own benefice. Cytoplasmic incompatibility (CI) is the most common phenomenon, which results in embryonic lethality when males that bear Wolbachia are mated with females that do not. In the cherry fruit fly, Rhagoletis cerasi, Wolbachia seems to be responsible for previously reported patterns of incompatibility between populations. Here we report on the artificial transfer of two Wolbachia variants (wCer1 and wCer2) from R. cerasi into Drosophila simulans, which was performed with two major goals in mind: first, to isolate wCer1 from wCer2 in order to individually test their respective abilities to induce CI in the new host; and, second, to test the theoretical prediction that recent Wolbachia-host associations should be characterized by high levels of CI, fitness costs to the new host, and inefficient transmission from mothers to offspring. wCer1 was unable to develop in the new host, resulting in its rapid loss after successful injection, while wCer2 was established in the new host. Transmission rates of wCer2 were low, and the infection showed negative fitness effects, consistent with our prediction, but CI levels were unexpectedly lower in the new host. Based on these parameter estimates, neither wCer1 nor wCer2 could be naturally maintained in D. simulans. The experiment thus suggests that natural Wolbachia transfer between species might be restricted by many factors, should the ecological barriers be bypassed.


Molecular Ecology | 2009

Hidden Wolbachia diversity in field populations of the European cherry fruit fly, Rhagoletis cerasi (Diptera, Tephritidae).

Wolfgang Arthofer; Markus Riegler; Daniela Schneider; Martin Krammer; Wolfgang J. Miller; Christian Stauffer

The European cherry fruit fly Rhagoletis cerasi has been a field model for cytoplasmic incompatibility since the mid 1970s. Two Wolbachia strains were detected in this tephritid species and wCer2 was described as the CI inducing agent dividing European populations into two unidirectional incompatible groups, i.e. southern females produce viable offspring with northern males, whereas the reciprocal cross results in incompatibility. We detected three new Wolbachia strains by sequencing a multitude of plasmids derived from Wolbachia surface protein gene (wsp) polymerase chain reaction (PCR) products. Strain‐specific primers were developed allowing individual diagnosis without need for cloning. Hybridization of specific PCR products with a wsp oligonucleotide enhanced the detection limit significantly and revealed the presence of low‐titre infections in some strains, in different ontogenetic stages and in adults of different age. We then performed a survey of strain prevalence and infection frequency in eight European regions. wCer1 was fixed in all populations, whereas wCer2 was detected only in the South. wCer3 frequency was the lowest without a clear distribution pattern. The abundance of wCer4 was homogenous across Europe. Like wCer2, wCer5 showed significant differences in spatial distribution. Our new findings of previously undetected and recombinant Wolbachia strains in R. cerasi reveal a major caveat to the research community not to overlook hidden Wolbachia diversity in field populations. Low‐titres and geographical variability in Wolbachia diversity are expected to influence the outcome of Wolbachia population dynamics and Wolbachia‐based insect population control and may create invasion barriers for expanding and artificially introduced Wolbachia strains.


Genetics | 2007

Male development time influences the strength of Wolbachia-induced cytoplasmic incompatibility expression in Drosophila melanogaster.

Ryuichi Yamada; Kevin D. Floate; Markus Riegler; Scott L. O'Neill

Cytoplasmic incompatibility (CI) is the most widespread reproductive modification induced in insects by the maternally inherited intracellular bacteria, Wolbachia. Expression of CI in Drosophila melanogaster is quite variable. Published papers typically show that CI expression is weak and often varies between different Drosophila lines and different labs reporting the results. The basis for this variability is not well understood but is often considered to be due to unspecified host genotype interactions with Wolbachia. Here, we show that male development time can greatly influence CI expression in D. melanogaster. In a given family, males that develop fastest express very strong CI. The “younger brothers” of these males (males that take longer to undergo larval development) quickly lose their ability to express the CI phenotype as a function of development time. This effect is independent of male age effects and is enhanced when flies are reared under crowded conditions. No correlation is seen between this effect and Wolbachia densities in testes, suggesting that a more subtle interaction between host and symbiont is responsible. The observed younger brother effect may explain much of the reported variability in CI expression in this species. When male development time is controlled, it is possible to obtain consistently high levels of CI expression, which will benefit future studies that wish to use D. melanogaster as a model host to unravel CI mechanisms.


Environmental Microbiology | 2009

Evidence for low-titre infections in insect symbiosis: Wolbachia in the bark beetle Pityogenes chalcographus (Coleoptera, Scolytinae).

Wolfgang Arthofer; Markus Riegler; Dimitrios N. Avtzis; Christian Stauffer

Wolbachia are obligatory endosymbiotic alpha-proteobacteria found in many insect species. They are maternally transmitted and often exhibit reproductive phenotypes like cytoplasmic incompatibility. Pityogenes chalcographus is a bark beetle causing severe damage in spruce stands. Its European populations are divided into several mitochondrial clades separated by partial crossing barriers. In this study, we tested a large sample set covering the natural range of the beetle in Europe for the presence of Wolbachia and associations between infection pattern and mitotypes using a highly sensitive nested PCR technique. 35.5% of the individuals were infected with the endosymbiont and two distinct strains were identified. Both strains occur in low titre not accessible by conventional detection methods. The infections are present all over Europe, unlikely to cause the partial crossing barriers in this host and uncoupled from mitochondrial clades. This pattern is indicative for populations evolving towards endosymbiont loss and for repeated intraspecific horizontal transfer of Wolbachia. Alternatively, the low-titre infections found in P. chalcographus are yet another example for Wolbachia that can persist in host species at low densities and frequencies.


Applied and Environmental Microbiology | 2006

Evolutionary Dynamics of wAu-Like Wolbachia Variants in Neotropical Drosophila spp.

Wolfgang J. Miller; Markus Riegler

ABSTRACT Wolbachia bacteria are common intracellular symbionts of arthropods and have been extensively studied in Drosophila. Most research focuses on two Old Word hosts, Drosophila melanogaster and Drosophila simulans, and does not take into account that some of the Wolbachia associations in these species may have evolved only after their fast global expansion and after the exposure to Wolbachia of previously isolated habitats. Here we looked at Wolbachia of Neotropical Drosophila species. Seventy-one lines of 16 Neotropical Drosophila species sampled in different regions and at different time points were analyzed. Wolbachia is absent in lines of Drosophila willistoni collected before the 1970s, but more recent samples are infected with a strain designated wWil. Wolbachia is absent in all other species of the willistoni group. Polymorphic wWil-related strains were detected in some saltans group species, with D. septentriosaltans being coinfected with at least four variants. Based on wsp and ftsZ sequence data, wWil of D. willistoni is identical to wAu, a strain isolated from D. simulans, but can be discriminated when using a polymorphic minisatellite marker. In contrast to wAu, which infects both germ line and somatic tissues of D. simulans, wWil is found exclusively in the primordial germ line cells of D. willistoni embryos. We report on a pool of closely related Wolbachia strains in Neotropical Drosophila species as a potential source for the wAu strain in D. simulans. Possible evolutionary scenarios reconstructing the infection history of wAu-like Wolbachia in Neotropical Drosophila species and the Old World species D. simulans are discussed.

Collaboration


Dive into the Markus Riegler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Spooner-Hart

University of Western Sydney

View shared research outputs
Top Co-Authors

Avatar

Wolfgang J. Miller

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony M. Haigh

University of Western Sydney

View shared research outputs
Researchain Logo
Decentralizing Knowledge