Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Renee T. Ormsby is active.

Publication


Featured researches published by Renee T. Ormsby.


Journal of Bone and Mineral Research | 2011

Sclerostin is a locally acting regulator of late‐osteoblast/preosteocyte differentiation and regulates mineralization through a MEPE‐ASARM‐dependent mechanism

Gerald J. Atkins; Peter S. N. Rowe; Hui P Lim; Katie J. Welldon; Renee T. Ormsby; Asiri R. Wijenayaka; Lesya Zelenchuk; Andreas Evdokiou; David M. Findlay

The identity of the cell type responsive to sclerostin, a negative regulator of bone mass, is unknown. Since sclerostin is expressed in vivo by mineral‐embedded osteocytes, we tested the hypothesis that sclerostin would regulate the behavior of cells actively involved in mineralization in adult bone, the preosteocyte. Differentiating cultures of human primary osteoblasts exposed to recombinant human sclerostin (rhSCL) for 35 days displayed dose‐ and time‐dependent inhibition of in vitro mineralization, with late cultures being most responsive in terms of mineralization and gene expression. Treatment of advanced (day 35) cultures with rhSCL markedly increased the expression of the preosteocyte marker E11 and decreased the expression of mature markers DMP1 and SOST. Concomitantly, matrix extracellular phosphoglycoprotein (MEPE) expression was increased by rhSCL at both the mRNA and protein levels, whereas PHEX was decreased, implying regulation through the MEPE‐ASARM axis. We confirmed that mineralization by human osteoblasts is exquisitely sensitive to the triphosphorylated ASARM‐PO4 peptide. Immunostaining revealed that rhSCL increased the endogenous levels of MEPE‐ASARM. Importantly, antibody‐mediated neutralization of endogenous MEPE‐ASARM antagonized the effect of rhSCL on mineralization, as did the PHEX synthetic peptide SPR4. Finally, we found elevated Sost mRNA expression in the long bones of HYP mice, suggesting that sclerostin may drive the increased MEPE‐ASARM levels and mineralization defect in this genotype. Our results suggest that sclerostin acts through regulation of the PHEX/MEPE axis at the preosteocyte stage and serves as a master regulator of physiologic bone mineralization, consistent with its localization in vivo and its established role in the inhibition of bone formation.


Endocrinology | 2010

Osteoclastic Metabolism of 25(OH)-Vitamin D3: A Potential Mechanism for Optimization of Bone Resorption

Masakazu Kogawa; David M. Findlay; Paul H. Anderson; Renee T. Ormsby; Cristina Vincent; Howard A. Morris; Gerald J. Atkins

The extrarenal synthesis of 1α,25 dihydroxyvitamin D3 (1,25D) has been demonstrated in a number of cell types including osteoblasts and cells of the monocyte/macrophage lineage. The skeleton appears responsive to serum levels of the 1,25D precursor, 25 hydroxyvitamin D3 (25D), in terms of bone mineralization parameters. The effect of metabolism of 25D into active 1,25D by osteoclast lineage cells is unknown. We found that CYP27B1 mRNA expression increased with exposure of human peripheral blood mononuclear cells (PBMCs) to macrophage colony-stimulating factor in the presence or absence of receptor activator of nuclear factor-κB ligand. Consistent with this, human osteoclast cultures incubated with 25D produced measurable quantities of 1,25D. Osteoclast formation from either mouse RAW264.7 cells or human PBMCs in the presence of physiological concentrations of 25D resulted in significant up-regulation of the key osteoclast transcription factor, nuclear factor of activated T cells-c1 in PBMCs and a number of key osteoclast marker genes in both models. The expression of the osteoblast coupling factor, ephrin-b2, was also increased in the presence of 25D. Levels of CYP27B1 and nuclear factor of activated T cells-1 mRNA correlated during osteoclastogenesis and also in a cohort of human bone samples. CYP27B1 short-hairpin RNA knockdown in RAW264.7 cells decreased their osteoclastogenic potential. 25D dose dependently reduced the resorptive capacity of PBMC-derived osteoclasts without compromising cell viability. 25D also reduced resorption by RAW264.7- and giant cell tumor-derived osteoclasts. Conversely, osteoclasts formed from vitamin D receptor-null mouse splenocytes had increased resorptive activity compared with wild-type cells. We conclude that 25D metabolism is an important intrinsic mechanism for optimizing osteoclast differentiation, ameliorating osteoclast activity, and potentially promoting the coupling of bone resorption to formation.


Journal of Bone and Mineral Research | 2013

Sclerostin Regulates Release of Bone Mineral by Osteocytes by Induction of Carbonic Anhydrase 2

Masakazu Kogawa; Asiri R. Wijenayaka; Renee T. Ormsby; Gethin P. Thomas; Paul H. Anderson; Lynda F. Bonewald; David M. Findlay; Gerald J. Atkins

The osteocyte product sclerostin is emerging as an important paracrine regulator of bone mass. It has recently been shown that osteocyte production of receptor activator of NF‐κB ligand (RANKL) is important in osteoclastic bone resorption, and we reported that exogenous treatment of osteocytes with sclerostin can increase RANKL‐mediated osteoclast activity. There is good evidence that osteocytes can themselves liberate mineral from bone in a process known as osteocytic osteolysis. In the current study, we investigated sclerostin‐stimulated mineral dissolution by human primary osteocyte‐like cells (hOCy) and mouse MLO‐Y4 cells. We found that sclerostin upregulated osteocyte expression of carbonic anhydrase 2 (CA2/Car2), cathepsin K (CTSK/Ctsk), and tartrate‐resistant acid phosphatase (ACP5/Acp5). Because acidification of the extracellular matrix is a critical step in the release of mineral from bone, we further examined the regulation by sclerostin of CA2. Sclerostin stimulated CA2 mRNA and protein expression in hOCy and in MLO‐Y4 cells. Sclerostin induced a decrease in intracellular pH (pHi) in both cell types as well as a decrease in extracellular pH (pHo) and the release of calcium ions from mineralized substrate. These effects were reversed in the co‐presence of the carbonic anhydrase inhibitor, acetozolamide. Car2‐siRNA knockdown in MLO‐Y4 cells significantly inhibited the ability of sclerostin to both reduce the pHo and release calcium from a mineralized substrate. Knockdown in MLO‐Y4 cells of each of the putative sclerostin receptors, Lrp4, Lrp5 and Lrp6, using siRNA, inhibited the sclerostin induction of Car2, Catk and Acp5 mRNA, as well as pHo and calcium release. Consistent with this activity of sclerostin resulting in osteocytic osteolysis, human trabecular bone samples treated ex vivo with recombinant human sclerostin for 7 days exhibited an increased osteocyte lacunar area, an effect that was reversed by the co‐addition of acetozolamide. These findings suggest a new role for sclerostin in the regulation of perilacunar mineral by osteocytes.


Molecular and Cellular Endocrinology | 2015

Regulation of FGF23 expression in IDG-SW3 osteocytes and human bone by pro-inflammatory stimuli

Nobuaki Ito; Asiri R. Wijenayaka; Matthew Prideaux; Masakazu Kogawa; Renee T. Ormsby; Andreas Evdokiou; Lynda F. Bonewald; David M. Findlay; Gerald J. Atkins

Fibroblast growth factor-23 (FGF23), produced by osteocytes, is the key physiological regulator of phosphate homeostasis. Sepsis patients often experience transient hypophosphataemia, suggesting the regulation of FGF23 levels by pro-inflammatory factors. Here, we used the osteocyte-like cell line IDG-SW3 to investigate the effect of pro-inflammatory stimuli on FGF23 production. In differentiated IDG-SW3 cultures, basal Fgf23 mRNA was dose-dependently up-regulated by pro-inflammatory cytokines TNF, IL-1β and TWEAK, and bacterial LPS. Similar effects were observed in human bone samples. TNF- and IL-1β-induced Fgf23 expression was NF-κB-dependent. Conversely, mRNA encoding negative regulators of FGF23, Phex, Dmp1 and Enpp1, were suppressed by TNF, IL-1β, TWEAK and LPS, independent of NF-κβ signalling. Galnt3, the protein product of which protects intact FGF23 protein from furin/furin-like proprotein convertase cleavage, increased in response to these treatments. C-terminal FGF23 and intact FGF23 protein levels also increased, the latter only in the presence of Furin inhibitors, suggesting that enzymatic cleavage exerts critical control of active FGF23 secretion by osteocytes. Our results demonstrate in principle that pro-inflammatory stimuli are capable of increasing osteocyte secretion of FGF23, which may contribute to hypophosphataemia during sepsis and possibly other inflammatory conditions.


Calcified Tissue International | 2014

SaOS2 Osteosarcoma Cells as an In Vitro Model for Studying the Transition of Human Osteoblasts to Osteocytes

Matthew Prideaux; Asiri R. Wijenayaka; D.D. Kumarasinghe; Renee T. Ormsby; Andreas Evdokiou; David M. Findlay; Gerald J. Atkins

The central importance of osteocytes in regulating bone homeostasis is becoming increasingly apparent. However, the study of these cells has been restricted by the relative paucity of cell line models, especially those of human origin. Therefore, we investigated the extent to which SaOS2 human osteosarcoma cells can differentiate into osteocyte-like cells. During culture under the appropriate mineralising conditions, SaOS2 cells reproducibly synthesised a bone-like mineralised matrix and temporally expressed the mature osteocyte marker genes SOST, DMP1, PHEX and MEPE and down-regulated expression of RUNX2 and COL1A1. SaOS2 cells cultured in 3D collagen gels acquired a dendritic morphology, characteristic of osteocytes, with multiple interconnecting cell processes. These findings suggest that SaOS2 cells have the capacity to differentiate into mature osteocyte-like cells under mineralising conditions. PTH treatment of SaOS2 cells resulted in strong down-regulation of SOST mRNA expression at all time points tested. Interestingly, PTH treatment resulted in the up-regulation of RANKL mRNA expression only at earlier stages of differentiation. These findings suggest that the response to PTH is dependent on the differentiation stage of the osteoblast/osteocyte. Together, our results demonstrate that SaOS2 cells can be used as a human model to investigate responses to osteotropic stimuli throughout differentiation to a mature osteocyte-like stage.


Molecular and Cellular Endocrinology | 2013

Calcium induces pro-anabolic effects on human primary osteoblasts associated with acquisition of mature osteocyte markers

Katie J. Welldon; David M. Findlay; Andreas Evdokiou; Renee T. Ormsby; Gerald J. Atkins

Calcium, in combination with vitamin D, is an effective treatment for osteoporosis. Since bone mineralisation occurs concurrently with osteoblast to osteocyte transition, we hypothesised that calcium would stimulate this process. The effect of calcium (1.8-11.8mM) was tested on human primary osteoblast (NHBC) differentiation in vitro. Cultures were assayed for cell-associated mineral and gene expression associated with osteoblast differentiation and mineralisation. Treatment with calcium resulted in a striking dose- and time-dependent increase in cell-associated mineralisation. Calcium appeared to promote osteoblast to osteocyte differentiation, as indicated by increased expression of osteocalcin (OCN), E11, dentin matrix protein 1 (DMP1) and SOST mRNA. The expression of the osteoclast inhibitor, osteoprotegerin, was dramatically enhanced by calcium. Calcium also increased the ratio of PHEX mRNA expression relative to that of MEPE, suggesting a mechanism for the pro-anabolic effect. Consistent with this, calcium-dependent mineralisation was reversed in the presence of MEPE-ASARM peptides. This study suggests that calcium promotes osteoblast to osteocyte transition and concurrent matrix mineralisation, at least in part through the PHEX-MEPE axis.


Acta Biomaterialia | 2016

Evidence that osteocyte perilacunar remodelling contributes to polyethylene wear particle induced osteolysis

Renee T. Ormsby; Melissa D. Cantley; Masakazu Kogawa; L. Bogdan Solomon; David M. Findlay; Gerald J. Atkins

UNLABELLED Periprosthetic osteolysis (PO) leading to aseptic loosening, is the most common cause of failure of total hip replacement (THR) in the mid- to long-term. Polyethylene (PE) particulates from the wear of prosthesis liners are bioactive and are implicated in the initiation and or progression of osteolysis. Evidence exists that cells of the osteoblast/osteocyte lineage are affected by PE particles and contribute to the catabolic response by promoting osteoclastic bone resorption. In this study, we hypothesised that osteocytes contribute directly to PO by removing bone from their perilacunar matrix. Osteocyte responses to ultra-high molecular weight PE (UHMWPE) particles were examined in vitro in human primary osteocyte-like cultures, in vivo in the mouse calvarial osteolysis model, and in the acetabulum of patients undergoing revision total hip replacement (THR) surgery for PO. Osteocytes exposed to UHMWPE particles showed upregulated expression of catabolic markers, MMP-13, carbonic anhydrase 2 (CA2), cathepsin K (CTSK) and tartrate resistant acid phosphatase (TRAP), with no effect on cell viability, as assessed by Caspase 3 activity. Consistent with this catabolic activity causing perilacunar bone loss, histological analysis of calvarial sections from mice exposed to UHMWPE revealed a significant (p<0.001) increase in osteocyte lacunar area (Lac.Ar) compared to sham-operated animals. Furthermore, acetabular biopsies from patients with PO also showed significantly (p<0.001) increased osteocyte lacunar size in trabecular bone adjacent to PE particles, compared with osteocyte lacunar size in bone from primary THR patients. Together, these findings suggest a previously unrecognised action of UHMWPE wear particles on osteocytes, which directly results in a loss of osteocyte perilacunar bone. This action may exacerbate the indirect pro-osteoclastic action of UHMWPE-affected osteocytes, previously shown to contribute to aseptic loosening of orthopaedic implants. STATEMENT OF SIGNIFICANCE This study addresses the clinical problem of periprosthetic osteolysis, bone loss in response to polyethylene wear particles derived from materials used in orthopaedic implants. Periprosthetic osteolysis has been thought to be due largely to wear particles stimulating the activity of bone resorbing osteoclasts. However, in this study we demonstrate for the first time that polyethylene particles stimulate another type of bone loss, mediated by the direct activity of bone mineral embedded osteocytes, termed osteocytic osteolysis or osteocyte perilacunar remodelling. This study provides new mechanistic insight into wear-particle mediated bone loss and represents a new paradigm for the way in which bone cells, namely osteocytes, the key controlling cell type in bone, react to biomaterials.


RSC Advances | 2015

Nanoengineered drug-releasing aluminium wire implants: comparative investigation of nanopore geometry, drug release and osteoblast cell adhesion

Shafiur Rahman; Renee T. Ormsby; Abel Santos; Gerald J. Atkins; David M. Findlay; Dusan Losic

In this study, drug-releasing aluminium (Al) wire implants featuring nanoporous alumina (NPA) layers produced by different anodization approaches are systematically investigated as potential platforms for localized drug delivery and bone therapy. NPA-Al wires are fabricated by symmetric and asymmetric two-step anodization approaches in sulphuric and oxalic acid electrolytes. The top surface of the resulting NPA layers displays different geometric features and a nanoporous structure. While a symmetric two-step anodization process yields nanoporous layers based on single nanopore cells, asymmetric anodization leads to a hierarchical nanoporous structure composed of 2–10 nanopores per cell, which can be precisely engineered by the anodization conditions. The drug-releasing performance of the resulting NPA layers is assessed through a series of in vitro studies. The results reveal that NPA-Al wire implants with hierarchical nanoporous structures present enhanced drug loading and release capabilities as compared to implants based on single nanopore cells. Biopolymer (chitosan) coating layers were incorporated onto these NPA-Al drug-loaded wire implants in order to control the release of the drug over a longer time period. Finally, the potential osseointegration of NPA-Al implants is evaluated by osteoblast cell adhesion experiments. NPA-Al implants with a hierarchical nanopore structure show significantly greater osteoblast cell attachment as compared to NPA-Al wires produced by symmetric anodization and their chitosan coated forms. Overall, this study demonstrates that drug releasing NPA-Al wire implants with precisely engineered nanopore structures have great potential as implant platforms for treatment of localized diseases such as bone cancer and osteomyelitis.


American Journal of Physiology-cell Physiology | 2018

Recombinant sclerostin antagonises effects of ex vivo mechanical loading in trabecular bone and increases osteocyte lacunar size

Masakazu Kogawa; Kamarul A Khalid; Asiri R. Wijenayaka; Renee T. Ormsby; Andreas Evdokiou; Paul H. Anderson; David M. Findlay; Gerald J. Atkins

Sclerostin has emerged as an important regulator of bone mass. We have shown that sclerostin can act by targeting late osteoblasts/osteocytes to inhibit bone mineralization and to upregulate osteocyte expression of catabolic factors, resulting in osteocytic osteolysis. Here we sought to examine the effect of exogenous sclerostin on osteocytes in trabecular bone mechanically loaded ex vivo. Bovine trabecular bone cores, with bone marrow removed, were inserted into individual chambers and subjected to daily episodes of dynamic loading. Cores were perfused with either osteogenic media alone or media containing human recombinant sclerostin (rhSCL) (50 ng/ml). Loaded control bone increased in apparent stiffness over time compared with unloaded bone, and this was abrogated in the presence of rhSCL. Loaded bone showed an increase in calcein uptake as a surrogate of mineral accretion, compared with unloaded bone, in which this was substantially inhibited by rhSCL treatment. Sclerostin treatment induced a significant increase in the ionized calcium concentration in the perfusate and the release of β-CTX at several time points, an increased mean osteocyte lacunar size, indicative of osteocytic osteolysis, and the expression of catabolism-related genes. Human primary osteocyte-like cultures treated with rhSCL also released β-CTX from their matrix. These results suggest that osteocytes contribute directly to bone mineral accretion, and to the mechanical properties of bone. Moreover, it appears that sclerostin, acting on osteocytes, can negate this effect by modulating the dimensions of the lacunocanalicular porosity and the composition of the periosteocyte matrix.


The Journal of Steroid Biochemistry and Molecular Biology | 2014

Analysis of vitamin D metabolism gene expression in human bone: evidence for autocrine control of bone remodelling

Renee T. Ormsby; David M. Findlay; Masakazu Kogawa; Paul H. Anderson; Howard A. Morris; Gerald J. Atkins

Collaboration


Dive into the Renee T. Ormsby's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul H. Anderson

University of South Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Howard A. Morris

University of South Australia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge