Matthias Ertl
Ludwig Maximilian University of Munich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthias Ertl.
NeuroImage | 2008
Christoph Mulert; Christian L. Seifert; Gregor Leicht; V. Kirsch; Matthias Ertl; S. Karch; Matthias Moosmann; Jürgen Lutz; Hans-Jürgen Möller; Ulrich Hegerl; Oliver Pogarell; Lorenz Jäger
While the precise role of the anterior cingulate cortex (ACC) is still being discussed, it has been suggested that ACC activity might reflect the amount of mental effort associated with cognitive processing. So far, not much is known about the temporal dynamics of ACC activity in effort-related decision making or auditory attention, because fMRI is limited concerning its temporal resolution and electroencephalography (EEG) is limited concerning its spatial resolution. Single-trial coupling of EEG and fMRI can be used to predict the BOLD signal specifically related to amplitude variations of electrophysiological components. The striking feature of single-trial coupling is its ability to separate different aspects of the BOLD signal according to their specific relationship to a distinct neural process. In the present study we investigated 10 healthy subjects with a forced choice reaction task under both low and high effort conditions and a control condition (passive listening) using simultaneous EEG and fMRI. We detected a significant effect of mental effort only for the N1 potential, but not for the P300 potential. In the fMRI analysis, ACC activation was present only in the high effort condition. We used single-trial coupling of EEG and fMRI in order to separate information specific to N1-amplitude variations from the unrelated BOLD response. Under high effort conditions we were able to detect circumscribed BOLD activations specific to the N1 potential in the ACC (t=4.7) and the auditory cortex (t=6.1). Comparing the N1-specific BOLD activity of the high effort condition versus the control condition we found only activation of the ACC (random effects analysis, corrected for multiple comparisons, t=4.4). These findings suggest a role of early ACC activation in effort-related decision making and provide a direct link between the N1 component and its corresponding BOLD signal.
NeuroImage | 2010
S. Karch; Regina Feuerecker; Gregor Leicht; Thomas Meindl; Irmgard Hantschk; V. Kirsch; Matthias Ertl; Jürgen Lutz; Oliver Pogarell; Christoph Mulert
Voluntary selection between response alternatives belongs to cognitive abilities controlling and regulating goal-directed behaviour. Voluntary selection processes are associated with increased neural activity, especially in medial and lateral frontal brain regions as well as the inferior parietal gyrus. However, the precise function of each brain region as well as the spatiotemporal characteristic of the brain regions involved is not yet clear. The aim of the present study was to disentangle distinct aspects of voluntary selection and their underlying neural processes. Hence, event-related potentials (ERPs) and functional MRI data were acquired simultaneously. Brain regions modulated by the task-induced amplitude variation of ERPs (N2, P3) were identified. The results showed N2-related hemodynamic responses, especially in medial and lateral frontal brain regions. Among other things, medial frontal brain regions are related to conflict monitoring, control of voluntary action and decision making. By contrast, the P3-amplitude proved to be predominantly related to increased BOLD responses in the temporo-parietal junction and lateral frontal brain regions. These brain regions are thought to play a decisive role in an attentional network involved in detecting auditory and visual stimuli. Overall, the results of the study indicated a whole network of brain regions to be associated with voluntary selection processes. In addition, at least some frontal brain regions seemed to be involved at an earlier stage than temporo-parietal regions, probably indicating a top-down process.
NeuroImage | 2012
Georg Juckel; S. Karch; Wolfram Kawohl; V. Kirsch; Lorenz Jäger; Gregor Leicht; Jürgen Lutz; Andreas Stammel; Oliver Pogarell; Matthias Ertl; Maximilian F. Reiser; Ulrich Hegerl; Hans-Jürgen Möller; Christoph Mulert
Age has been reported to influence amplitude and latency of the P300 potential. Nevertheless, it is not yet fully understood which brain regions are responsible for these effects. The aim of this study was to investigate age-effects on the P300 potential and the simultaneously acquired BOLD signal of functional MRI. 32 healthy male subjects were investigated using an auditory oddball paradigm. The functional MRI data were acquired in temporal synchrony to the task. The evoked potential data were recorded during the intervals in between MR image acquisitions in order to reduce the influence of the scanner noise on the presentation of the tones and to reduce gradient artifacts. The age-effects were calculated by means of regression analyses. In addition, brain regions modulated by the task-induced amplitude variation of the P300 were identified (single trial analysis). The results indicated an age effect on the P300 amplitude. Younger subjects demonstrated increased parietal P300 amplitudes and increased BOLD responses in a network of brain regions including the anterior and posterior cingulate cortex, the insula, the temporo-parietal junction, the superior temporal gyrus, the caudate body, the amygdala and the parahippocampal gyrus. Single trial coupling of EEG and fMRI indicated that P300 amplitudes were predominantly associated with neural responses in the anterior cingulate cortex, the putamen and temporal brain areas. Taken together, the results indicate diminished neural responses in older compared to younger subjects especially in frontal, temporo-parietal and subcortical brain regions.
PLOS ONE | 2013
Gregor Leicht; Stefan Troschütz; Christina Andreou; Evangelos Karamatskos; Matthias Ertl; Dieter Naber; Christoph Mulert
Background The processing of reward and punishment stimuli in humans appears to involve brain oscillatory activity of several frequencies, probably each with a distinct function. The exact nature of associations of these electrophysiological measures with impulsive or risk-seeking personality traits is not completely clear. Thus, the aim of the present study was to investigate event-related oscillatory activity during reward processing across a wide spectrum of frequencies, and its associations with impulsivity and sensation seeking in healthy subjects. Methods During recording of a 32-channel EEG 22 healthy volunteers were characterized with the Barratt Impulsiveness and the Sensation Seeking Scale and performed a computerized two-choice gambling task comprising different feedback options with positive vs. negative valence (gain or loss) and high or low magnitude (5 vs. 25 points). Results We observed greater increases of amplitudes of the feedback-related negativity and of activity in the theta, alpha and low-beta frequency range following loss feedback and, in contrast, greater increase of activity in the high-beta frequency range following gain feedback. Significant magnitude effects were observed for theta and delta oscillations, indicating greater amplitudes upon feedback concerning large stakes. The theta amplitude changes during loss were negatively correlated with motor impulsivity scores, whereas alpha and low-beta increase upon loss and high-beta increase upon gain were positively correlated with various dimensions of sensation seeking. Conclusions The findings suggest that the processing of feedback information involves several distinct processes, which are subserved by oscillations of different frequencies and are associated with different personality traits.
NeuroImage | 2014
Saskia Steinmann; Gregor Leicht; Matthias Ertl; Christina Andreou; Nenad Polomac; René Westerhausen; Angela D. Friederici; Christoph Mulert
While the role of synchronized oscillatory activity in the gamma-band frequency range for conscious perception is well established in the visual domain, there is limited evidence concerning neurophysiological mechanisms in conscious auditory perception. In the current study, we addressed this issue with 64-channel EEG and a dichotic listening (DL) task in twenty-five healthy participants. The typical finding of DL is a more frequent conscious perception of the speech syllable presented to the right ear (RE), which is attributed to the supremacy of the contralateral pathways running from the RE to the speech-dominant left hemisphere. In contrast, the left ear (LE) input initially accesses the right hemisphere and needs additional transfer via interhemispheric pathways before it is processed in the left hemisphere. Using lagged phase synchronization (LPS) analysis and eLORETA source estimation we examined the functional connectivity between right and left primary and secondary auditory cortices in the main frequency bands (delta, theta, alpha, beta, gamma) during RE/LE-reports. Interhemispheric LPS between right and left primary and secondary auditory cortices was specifically increased in the gamma-band range, when participants consciously perceived the syllable presented to the LE. Our results suggest that synchronous gamma oscillations are involved in interhemispheric transfer of auditory information.
NeuroImage | 2012
Fern Jaspers-Fayer; Matthias Ertl; Gregor Leicht; Anne Leupelt; Christoph Mulert
Event-related potential (ERP) studies in the visual domain often report an emotion-evoked early posterior negativity (EPN). Studies in the auditory domain have recently shown a similar component. Little source localization has been done on the visual EPN, and no source localization has been done on the auditory EPN. The aim of the current study was to identify the neural generators of the auditory EPN using EEG-fMRI single-trial coupling. Data were recorded from 19 subjects who completed three auditory choice reaction tasks: (1) a control task using neutral tones; (2) a prosodic emotion task involving the categorization of syllables; and (3) a semantic emotion task involving the categorization of words. The waveforms of the emotion tasks diverged from the neutral task over parietal scalp during a very early time window (132-156 ms) and later during a more traditional EPN time window (252-392 ms). In the EEG-fMRI analyses, the variance of the voltage in the earlier time window was correlated with activity in the medial prefrontal cortex, but only in the word task. In the EEG-fMRI analyses of the traditional EPN time window both emotional tasks covaried with activity in the left superior parietal lobule. Our results support previous parietal cortex source localization findings for the visual EPN, and suggest enhanced selective attention to emotional stimuli during the EPN time window.
The Journal of Neuroscience | 2015
Benjamin Meyer; Kenneth Yuen; Matthias Ertl; Nenad Polomac; Christoph Mulert; Christian Büchel; Raffael Kalisch
The beneficial effects of placebo treatments on fear and anxiety (placebo anxiolysis) are well known from clinical practice, and there is strong evidence indicating a contribution of treatment expectations to the efficacy of anxiolytic drugs. Although clinically highly relevant, the neural mechanisms underlying placebo anxiolysis are poorly understood. In two studies in humans, we tested whether the administration of an inactive treatment along with verbal suggestions of anxiolysis can attenuate experimentally induced states of phasic fear and/or sustained anxiety. Phasic fear is the response to a well defined threat and includes attentional focusing on the source of threat and concomitant phasic increases of autonomic arousal, whereas in sustained states of anxiety potential and unclear danger requires vigilant scanning of the environment and elevated tonic arousal levels. Our placebo manipulation consistently reduced vigilance measured in terms of undifferentiated reactivity to salient cues (indexed by subjective ratings, skin conductance responses and EEG event-related potentials) and tonic arousal [indexed by cue-unrelated skin conductance levels and enhanced EEG alpha (8–12 Hz) activity], indicating a downregulation of sustained anxiety rather than phasic fear. We also observed a placebo-dependent sustained increase of frontal midline EEG theta (4–7 Hz) power and frontoposterior theta coupling, suggesting the recruitment of frontally based cognitive control functions. Our results thus support the crucial role of treatment expectations in placebo anxiolysis and provide insight into the underlying neural mechanisms.
Journal of Neuroscience Methods | 2010
Matthias Ertl; V. Kirsch; Gregor Leicht; S. Karch; Sebastian Olbrich; Maximilian F. Reiser; Ulrich Hegerl; Oliver Pogarell; Chistoph Mulert
Simultaneous acquisition of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data could offer a much deeper understanding of brain function, e.g. in the analysis of tempo-spatial dynamics of brain activity in cognitive processing. However, more sophisticated analysis methods such as single-trial coupling of EEG and fMRI are often handicapped by the limited quality of EEGs acquired in the MRI scanner. In particular, the ballistocardiogram (BCG) artifact is still a relevant problem. Methods that are currently available typically remove the BCG artifact either in post-recording or real-time signal processing. Here, we would like to suggest a new strategy to avoid BCG artifacts during data acquisition. In our proposal, stimuli are presented pulse-triggered (PT), thus avoiding interference of BCG artifacts with the evoked potentials investigated during EEG recording. This method is based on the observation that the main influence of the BCG artifact is generally limited to the time interval of 150-500 ms post-QRS complex. Based on real measurements, we simulated different signal presentation methods relative to the onset of the BCG artifact for 14 subjects. Stimuli were either presented independently of the BCG artifact or pulse-triggered at fixed time-points (280 ms, 480 ms and 680 ms post-QRS complex) and with a jitter (short: 120 ms or long: 240 ms). In combination with an averaged artifact subtraction method signal distortion was reduced at best by 47%.
Biological Psychiatry | 2013
Gregor Leicht; Christoph Mulert; Daniela Eser; Philipp G. Sämann; Matthias Ertl; Anna Laenger; S. Karch; Oliver Pogarell; Thomas Meindl; Michael Czisch; Rainer Rupprecht
BACKGROUND Benzodiazepines modulate γ-aminobutyric acid type A (GABA(A)) receptors throughout the brain. However, it is not fully understood which brain regions within anxiety-related brain circuits are really responsible for their anxiolytic effects and how these regions interact. METHODS We investigated whether the benzodiazepine alprazolam affects activity in distinct brain regions within anxiety-related circuits during an experimental anxiety paradigm by means of functional magnetic resonance imaging (fMRI). Panic symptoms were elicited by a bolus injection of the neuropeptide cholecystokinin-tetrapeptide (CCK-4) in 16 healthy male subjects in a double-blind, placebo-controlled design. Functional brain activation patterns were determined before and during the CCK-4-challenge without pretreatment and after treatment with either placebo or 1 mg alprazolam. RESULTS The CCK-4 induced anxiety and elicited widely distributed activation patterns in anxiety-related brain circuits, especially in the rostral anterior cingulate cortex (rACC), which was attenuated after alprazolam treatment. In contrast to placebo, alprazolam abolished the activation of the rACC after challenge with CCK-4 (p<.005, corrected for multiple comparisons) and increased functional connectivity between the rACC and other anxiety-related brain regions such as amygdala and prefrontal cortex. Moreover, the reduction in the CCK-4 induced activation of the rACC correlated with the anxiolytic effect of alprazolam (r(p) = .52; p = .04). CONCLUSIONS These findings put forward the rACC as a target for benzodiazepines and suggest that the CCK-4/fMRI paradigm might represent a human translational model for the investigation of anxiolytic drugs.
Frontiers in Psychiatry | 2014
S. Karch; Julia Madeleine Voelker; Tobias Thalmeier; Matthias Ertl; Gregor Leicht; Oliver Pogarell; Christoph Mulert
Deficits in executive functions, including voluntary decisions are among the core symptoms of attention deficit/hyperactivity disorder (ADHD) patients. In order to clarify the spatiotemporal characteristics of these deficits, a simultaneous EEG/functional MRI (fMRI) study was performed. Single-trial coupling was used to integrate temporal EEG information in the fMRI analyses and to correlate the trial by trial variation in the different event-related potential amplitudes with fMRI BOLD responses. The results demonstrated that during voluntary selection early electrophysiological responses (N2) were associated with responses in similar brain regions in healthy participants as well as in ADHD patients, e.g., in the medial-frontal cortex and the inferior parietal gyrus. However, ADHD patients presented significantly reduced N2-related BOLD responses compared to healthy controls especially in frontal areas. These results support the hypothesis that in ADHD patients executive deficits are accompanied by early dysfunctions, especially in frontal brain areas.