Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mehdi Kiani is active.

Publication


Featured researches published by Mehdi Kiani.


IEEE Transactions on Biomedical Circuits and Systems | 2011

Design and Optimization of a 3-Coil Inductive Link for Efficient Wireless Power Transmission

Mehdi Kiani; Uei-Ming Jow; Maysam Ghovanloo

Inductive power transmission is widely used to energize implantable microelectronic devices (IMDs), recharge batteries, and energy harvesters. Power transfer efficiency (PTE) and power delivered to the load (PDL) are two key parameters in wireless links, which affect the energy source specifications, heat dissipation, power transmission range, and interference with other devices. To improve the PTE, a 4-coil inductive link has been recently proposed. Through a comprehensive circuit-based analysis that can guide a design and optimization scheme, we have shown that despite achieving high PTE at larger coil separations, the 4-coil inductive links fail to achieve a high PDL. Instead, we have proposed a 3-coil inductive power transfer link with comparable PTE over its 4-coil counterpart at large coupling distances, which can also achieve high PDL. We have also devised an iterative design methodology that provides the optimal coil geometries in a 3-coil inductive power transfer link. Design examples of 2-, 3-, and 4-coil inductive links have been presented, and optimized for a 13.56-MHz carrier frequency and 12-cm coupling distance, showing PTEs of 15%, 37%, and 35%, respectively. At this distance, the PDL of the proposed 3-coil inductive link is 1.5 and 59 times higher than its equivalent 2- and 4-coil links, respectively. For short coupling distances, however, 2-coil links remain the optimal choice when a high PDL is required, while 4-coil links are preferred when the driver has large output resistance or small power is needed. These results have been verified through simulations and measurements.


IEEE Transactions on Circuits and Systems | 2012

The Circuit Theory Behind Coupled-Mode Magnetic Resonance-Based Wireless Power Transmission

Mehdi Kiani; Maysam Ghovanloo

Inductive coupling is a viable scheme to wirelessly energize devices with a wide range of power requirements from nanowatts in radio frequency identification tags to milliwatts in implantable microelectronic devices, watts in mobile electronics, and kilowatts in electric cars. Several analytical methods for estimating the power transfer efficiency (PTE) across inductive power transmission links have been devised based on circuit and electromagnetic theories by electrical engineers and physicists, respectively. However, a direct side-by-side comparison between these two approaches is lacking. Here, we have analyzed the PTE of a pair of capacitively loaded inductors via reflected load theory (RLT) and compared it with a method known as coupled-mode theory (CMT). We have also derived PTE equations for multiple capacitively loaded inductors based on both RLT and CMT. We have proven that both methods basically result in the same set of equations in steady state and either method can be applied for short- or midrange coupling conditions. We have verified the accuracy of both methods through measurements, and also analyzed the transient response of a pair of capacitively loaded inductors. Our analysis shows that the CMT is only applicable to coils with high quality factor (Q) and large coupling distance. It simplifies the analysis by reducing the order of the differential equations by half compared to the circuit theory.


international solid-state circuits conference | 2010

An inductively powered scalable 32-channel wireless neural recording system-on-a-chip for neuroscience applications

Seung Bae Lee; Hyung-Min Lee; Mehdi Kiani; Uei-Ming Jow; Maysam Ghovanloo

There has been considerable effort devoted to developing technology for interfacing with the central nervous system in laboratory animals and humans [1–2]. Even though these efforts have led to marvelous technological advancements in circuits and systems, some of the resulting devices may find little use in their application domain, because the specifics of the targeted applications or the realistic needs of the end users may not be taken into account.


IEEE Transactions on Circuits and Systems Ii-express Briefs | 2010

An RFID-Based Closed-Loop Wireless Power Transmission System for Biomedical Applications

Mehdi Kiani; Maysam Ghovanloo

This brief presents a standalone closed-loop wireless power transmission system that is built around a commercial off-the-shelf (COTS) radio-frequency identification (RFID) reader (TRF7960) operating at 13.56 MHz. It can be used for inductively powering implantable biomedical devices in a closed loop. Any changes in the distance and misalignment between transmitter and receiver coils in near-field wireless power transmission can cause a significant change in the received power, which can cause either a malfunction or excessive heat dissipation. RFID circuits are often used in an open loop. However, their back telemetry capability can be utilized to stabilize the received voltage on the implant. Our measurements showed that the delivered power to the transponder was maintained at 11.2 mW over a range of 0.5 to 2 cm, while the transmitter power consumption changed from 78 mW to 1.1 W. The closed-loop system can also oppose voltage variations as a result of sudden changes in the load current.


IEEE Transactions on Industrial Electronics | 2013

A Figure-of-Merit for Designing High-Performance Inductive Power Transmission Links

Mehdi Kiani; Maysam Ghovanloo

Power transfer efficiency (PTE) and power delivered to the load (PDL) are two key inductive link design parameters that relate to the power source and driver specs, power loss, transmission range, robustness against misalignment, variations in loading, and interference with other devices. Designers need to strike a delicate balance between these two because designing the link to achieve high PTE will degrade the PDL and vice versa. We are proposing a new figure-of-merit (FoM), which can help designers to find out whether a two-, three-, or four-coil link is appropriate for their particular application and guide them through an iterative design procedure to reach optimal coil geometries based on how they weigh the PTE versus PDL for that application. Three design examples at three different power levels have been presented based on the proposed FoM for implantable microelectronic devices, handheld mobile devices, and electric vehicles. The new FoM suggests that the two-coil links are suitable when the coils are strongly coupled, and a large PDL is needed. Three-coil links are the best when the coils are loosely coupled, the coupling distance varies considerably, and large PDL is necessary. Finally, four-coil links are optimal when the PTE is paramount, the coils are loosely coupled, and their relative distance and alignment are stable. Measurement results support the accuracy of the theoretical design procedure and conclusions.


IEEE Journal of Solid-state Circuits | 2011

A 10.2 Mbps Pulse Harmonic Modulation Based Transceiver for Implantable Medical Devices

Farzad Inanlou; Mehdi Kiani; Maysam Ghovanloo

A low power wireless transceiver has been presented for near-field data transmission across inductive telemetry links, which operates based on pulse harmonic modulation (PHM). This PHM transceiver uses on-off keying (OOK) of a pattern of pulses to suppress inter-symbol interference (ISI), and its characteristics are suitable for low-power high-bandwidth telemetry in implantable neuroprosthetic devices. To transmit each bit across a pair of high-Q LC-tank circuits, the PHM transmitter generates a string of narrow pulses with specific amplitudes and timing. Each pulse generates a decaying oscillation at the harmonic frequency that the receiver LC-tank is tuned at, which is then superimposed with other oscillations across the receiver at the same frequency, to minimize the ISI. This allows for reaching high data rates without reducing the inductive link quality factor (to extend its bandwidth), which significantly improves the range and selectivity of the link. The PHM receiver architecture is based on non-coherent energy detection with programmable bandwidth and adjustable gain. The PHM transceiver was fabricated in a 0.5- μm standard CMOS process, occupying 1.8 mm2. The transceiver achieved a measured 10.2 Mbps data rate with a bit error rate (BER) of 6.3×10-8 at 1 cm distance using planar implant sized (1 cm2) figure-8 coils. The PHM transmitter power consumption was 345 pJ/bit and 8.85 pJ/bit at 1 cm and zero link distances, respectively. The receiver dissipates 3 mW at 3.3 V supply voltage.


IEEE Transactions on Biomedical Circuits and Systems | 2016

A Triple-Loop Inductive Power Transmission System for Biomedical Applications

Byunghun Lee; Mehdi Kiani; Maysam Ghovanloo

A triple-loop wireless power transmission (WPT) system equipped with closed-loop global power control, adaptive transmitter (Tx) resonance compensation (TRC), and automatic receiver (Rx) resonance tuning (ART) is presented. This system not only opposes coupling and load variations but also compensates for changes in the environment surrounding the inductive link to enhance power transfer efficiency (PTE) in applications such as implantable medical devices (IMDs). The Tx was built around a commercial off-the-shelf (COTS) radio-frequency identification (RFID) reader, operating at 13.56 MHz. A local Tx loop finds the optimal capacitance in parallel with the Tx coil by adjusting a varactor. A global power control loop maintains the received power at a desired level in the presence of changes in coupling distance, coil misalignments, and loading. Moreover, a local Rx loop is implemented inside a power management integrated circuit (PMIC) to avoid PTE degradation due to the Rx coil surrounding environment and process variations. The PMIC was fabricated in a 0.35- μm 4M2P standard CMOS process with 2.54 mm2 active area. Measurement results show that the proposed triple-loop system improves the overall PTE by up to 10.5% and 4.7% compared to a similar open- and single closed-loop system, respectively, at nominal coil distance of 2 cm. The added TRC and ART loops contribute 2.3% and 1.4% to the overall PTE of 13.5%, respectively. This is the first WPT system to include three loops to dynamically compensate for environment and circuit variations and improve the overall power efficiency all the way from the driver output in Tx to the load in Rx.


IEEE Transactions on Microwave Theory and Techniques | 2010

A 6-Bit CMOS Phase Shifter for

Masoud Meghdadi; Mehrdad Azizi; Mehdi Kiani; Ali Medi; Mojtaba Atarodi

A 6-bit passive phase shifter for 2.5- to 3.2-GHz frequency band has been designed and implemented in a standard 0.18- μm CMOS technology. A new switched-network topology has been proposed for implementing the 5.625 ° phase shift step. The insertion loss of the circuit is compensated with an on-chip bidirectional amplifier. The measured return losses of the circuit are better than 8 dB with output 1-dB compression point of +9.5 dBm in the transmit mode and noise figure of 7.1 dB in the receive mode. The fabricated phase shifter demonstrates an average RMS phase error of less than 2° over the entire operation bandwidth, which makes it suitable for high-precision applications.


IEEE Transactions on Biomedical Circuits and Systems | 2015

S

Mehdi Kiani; Maysam Ghovanloo

A fully-integrated near-field wireless transceiver has been presented for simultaneous data and power transmission across inductive links, which operates based on pulse delay modulation (PDM) technique. PDM is a low-power carrier-less modulation scheme that offers wide bandwidth along with robustness against strong power carrier interference, which makes it suitable for implantable neuroprosthetic devices, such as retinal implants. To transmit each bit, a pattern of narrow pulses are generated at the same frequency of the power carrier across the transmitter (Tx) data coil with specific time delays to initiate decaying ringing across the tuned receiver (Rx) data coil. This ringing shifts the zero-crossing times of the undesired power carrier interference on the Rx data coil, resulting in a phase shift between the signals across Rx power and data coils, from which the data bit stream can be recovered. A PDM transceiver prototype was fabricated in a 0.35- μm standard CMOS process, occupying 1.6 mm2. The transceiver achieved a measured 13.56 Mbps data rate with a raw bit error rate (BER) of 4.3×10-7 at 10 mm distance between figure-8 data coils, despite a signal-to-interference ratio (SIR) of -18.5 dB across the Rx data coil. At the same time, a class-D power amplifier, operating at 13.56 MHz, delivered 42 mW of regulated power across a separate pair of high-Q power coils, aligned with the data coils. The PDM data Tx and Rx power consumptions were 960 pJ/bit and 162 pJ/bit, respectively, at 1.8 V supply voltage.


IEEE Transactions on Biomedical Engineering | 2014

-Band

Uei-Ming Jow; Peter McMenamin; Mehdi Kiani; Joseph R. Manns; Maysam Ghovanloo

Wireless power, when coupled with miniaturized implantable electronics, has the potential to provide a solution to several challenges facing neuroscientists during basic and preclinical studies with freely behaving animals. The EnerCage system is one such solution as it allows for uninterrupted electrophysiology experiments over extended periods of time and vast experimental arenas, while eliminating the need for bulky battery payloads or tethering. It has a scalable array of overlapping planar spiral coils (PSCs) and three-axis magnetic sensors for focused wireless power transmission to devices on freely moving subjects. In this paper, we present the first fully functional EnerCage system, in which the number of PSC drivers and magnetic sensors was reduced to one-third of the number used in our previous design via multicoil coupling. The power transfer efficiency (PTE) has been improved to 5.6% at a 120 mm coupling distance and a 48.5 mm lateral misalignment (worst case) between the transmitter (Tx) array and receiver (Rx) coils. The new EnerCage system is equipped with an Ethernet backbone, further supporting its modular/scalable architecture, which, in turn, allows experimental arenas with arbitrary shapes and dimensions. A set of experiments on a freely behaving rat were conducted by continuously delivering 20 mW to the electronics in the animal headstage for more than one hour in a powered 3538 cm2 experimental area.

Collaboration


Dive into the Mehdi Kiani's collaboration.

Top Co-Authors

Avatar

Maysam Ghovanloo

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ahmed Ibrahim

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Uei-Ming Jow

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Aydin Farajidavar

New York Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Byunghun Lee

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Miao Meng

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Hyung-Min Lee

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Dukju Ahn

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Peter McMenamin

Georgia Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge