Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mejd Alsari is active.

Publication


Featured researches published by Mejd Alsari.


Science | 2016

Photon recycling in lead-iodide perovskite solar cells

Luis M. Pazos-Outón; M. Szumilo; Robin Lamboll; Johannes M. Richter; Micaela Crespo-Quesada; Mojtaba Abdi-Jalebi; Harry J. Beeson; M. Vru ini; Mejd Alsari; Henry J. Snaith; Bruno Ehrler; Richard H. Friend; Felix Deschler

Perovskite solar cells recycle photons Inorganic-organic perovskite solar cells are very efficient in part because the charge carriers exhibit very long path lengths. Pazos-Outón et al. show that photon recycling, as seen previously in highly efficient gallium arsenide solar cells, contributes to this effect (see the Perspective by Yablonovitch). In most solar cells, the recombination of photogenerated charge carriers (electrons and holes) wastes all of the energy. In these lead tri-iodide cells, recombination emits a photon that can be reabsorbed and create more charge carriers. Science, this issue p. 1430; see also p. 1401 Exceptionally long charge-extraction lengths are enabled by multiple cycles of photon absorption and emission. [Also see Perspective by Yablonovitch] Lead-halide perovskites have emerged as high-performance photovoltaic materials. We mapped the propagation of photogenerated luminescence and charges from a local photoexcitation spot in thin films of lead tri-iodide perovskites. We observed light emission at distances of ≥50 micrometers and found that the peak of the internal photon spectrum red-shifts from 765 to ≥800 nanometers. We used a lateral-contact solar cell with selective electron- and hole-collecting contacts and observed that charge extraction for photoexcitation >50 micrometers away from the contacts arose from repeated recycling between photons and electron-hole pairs. Thus, energy transport is not limited by diffusive charge transport but can occur over long distances through multiple absorption-diffusion-emission events. This process creates high excitation densities within the perovskite layer and allows high open-circuit voltages.


Nature | 2018

Maximizing and stabilizing luminescence from halide perovskites with potassium passivation

Mojtaba Abdi-Jalebi; Zahra Andaji-Garmaroudi; Stefania Cacovich; Camille Stavrakas; Bertrand Philippe; Johannes M. Richter; Mejd Alsari; Edward P. Booker; Eline M. Hutter; Andrew J. Pearson; Samuele Lilliu; Tom J. Savenije; Håkan Rensmo; Giorgio Divitini; Caterina Ducati; Richard H. Friend; Samuel D. Stranks

Metal halide perovskites are of great interest for various high-performance optoelectronic applications. The ability to tune the perovskite bandgap continuously by modifying the chemical composition opens up applications for perovskites as coloured emitters, in building-integrated photovoltaics, and as components of tandem photovoltaics to increase the power conversion efficiency. Nevertheless, performance is limited by non-radiative losses, with luminescence yields in state-of-the-art perovskite solar cells still far from 100 per cent under standard solar illumination conditions. Furthermore, in mixed halide perovskite systems designed for continuous bandgap tunability (bandgaps of approximately 1.7 to 1.9 electronvolts), photoinduced ion segregation leads to bandgap instabilities. Here we demonstrate substantial mitigation of both non-radiative losses and photoinduced ion migration in perovskite films and interfaces by decorating the surfaces and grain boundaries with passivating potassium halide layers. We demonstrate external photoluminescence quantum yields of 66 per cent, which translate to internal yields that exceed 95 per cent. The high luminescence yields are achieved while maintaining high mobilities of more than 40 square centimetres per volt per second, providing the elusive combination of both high luminescence and excellent charge transport. When interfaced with electrodes in a solar cell device stack, the external luminescence yield—a quantity that must be maximized to obtain high efficiency—remains as high as 15 per cent, indicating very clean interfaces. We also demonstrate the inhibition of transient photoinduced ion-migration processes across a wide range of mixed halide perovskite bandgaps in materials that exhibit bandgap instabilities when unpassivated. We validate these results in fully operating solar cells. Our work represents an important advance in the construction of tunable metal halide perovskite films and interfaces that can approach the efficiency limits in tandem solar cells, coloured-light-emitting diodes and other optoelectronic applications.


Scientific Reports | 2015

Absence of Structural Impact of Noble Nanoparticles on P3HT:PCBM Blends for Plasmon-Enhanced Bulk-Heterojunction Organic Solar Cells Probed by Synchrotron GI-XRD

Samuele Lilliu; Mejd Alsari; Oier Bikondoa; J. Emyr Macdonald; Marcus S. Dahlem

The incorporation of noble metal nanoparticles, displaying localized surface plasmon resonance, in the active area of donor-acceptor bulk-heterojunction organic photovoltaic devices is an industrially compatible light trapping strategy, able to guarantee better absorption of the incident photons and give an efficiency improvement between 12% and 38%. In the present work, we investigate the effect of Au and Ag nanoparticles blended with P3HT: PCBM on the P3HT crystallization dynamics by synchrotron grazing incidence X-ray diffraction. We conclude that the presence of (1) 80 nm Au, (2) mix of 5 nm, 50 nm, 80 nm Au, (3) 40 nm Ag, and (4) 10 nm, 40 nm, 60 nm Ag colloidal nanoparticles, at different concentrations below 0.3 wt% for Au and below 0.1% for Ag in P3HT: PCBM blends, does not affect the behaviour of the blends themselves.


CrystEngComm | 2016

Grain rotation and lattice deformation during perovskite spray coating and annealing probed in situ by GI-WAXS

Samuele Lilliu; Jonathan Griffin; Alexander T. Barrows; Mejd Alsari; B. Curzadd; Thomas G. Dane; Oier Bikondoa; John Emyr MacDonald; David G. Lidzey

We report for the first time on grain rotation in CH3NH3PbI3 perovskite films for ∼12% efficient planar solar cells and present a new method for investigating their texture evolution during thermal annealing. Our technique is based on in situ 2D grazing incidence wide-angle X-ray scattering (GI-WAXS) and employs a 10 keV wide-focussed X-ray beam to simultaneously probe a large number of grains. The ability to track the texture dynamics from a statistically relevant number of spots diffracting from single grains during thermal annealing and in grazing incidence geometry can have applications understanding the processing dynamics of a range of new materials.


Energy and Environmental Science | 2018

In situ simultaneous photovoltaic and structural evolution of perovskite solar cells during film formation

Mejd Alsari; Oier Bikondoa; James E. Bishop; Mojtaba Abdi-Jalebi; Lütfiye Y. Ozer; Mark Hampton; Paul Thompson; Maximilian T. Hörantner; Suhas Mahesh; Claire Greenland; J. Emyr Macdonald; Giovanni Palmisano; Henry J. Snaith; David G. Lidzey; Samuel D. Stranks; Richard H. Friend; Samuele Lilliu

Metal-halide perovskites show remarkably clean semiconductor behaviour, as evidenced by their excellent solar cell performance, in spite of the presence of many structural and chemical defects. Here, we show how this clean semiconductor performance sets in during the earliest phase of conversion from the metal salts and organic-based precursors and solvent, using simultaneous in situ synchrotron X-ray and in operando current–voltage measurements on films prepared on interdigitated back-contact substrates. These structures function as working solar cells as soon as sufficient semiconductor material is present across the electrodes. We find that at the first stages of conversion from the precursor phase, at the percolation threshold for bulk conductance, high photovoltages are observed, even though the bulk of the material is still present as precursors. This indicates that at the earliest stages of perovskite structure formation, the semiconductor gap is already well-defined and free of sub-gap trap states. The short circuit current, in contrast, continues to grow until the perovskite phase is fully formed, when there are bulk pathways for charge diffusion and collection. This work reveals important relationships between the precursors conversion and device performance and highlights the remarkable defect tolerance of perovskite materials.


Scientific Reports | 2018

Degradation Kinetics of Inverted Perovskite Solar Cells

Mejd Alsari; Andrew J. Pearson; Jacob Tse-Wei Wang; Zhiping Wang; Augusto Montisci; Neil C. Greenham; Henry J. Snaith; Samuele Lilliu; Richard H. Friend

We explore the degradation behaviour under continuous illumination and direct oxygen exposure of inverted unencapsulated formamidinium(FA)0.83Cs0.17Pb(I0.8Br0.2)3, CH3NH3PbI3, and CH3NH3PbI3−xClx perovskite solar cells. We continuously test the devices in-situ and in-operando with current-voltage sweeps, transient photocurrent, and transient photovoltage measurements, and find that degradation in the CH3NH3PbI3−xClx solar cells due to oxygen exposure occurs over shorter timescales than FA0.83Cs0.17Pb(I0.8Br0.2)3 mixed-cation devices. We attribute these oxygen-induced losses in the power conversion efficiencies to the formation of electron traps within the perovskite photoactive layer. Our results highlight that the formamidinium-caesium mixed-cation perovskites are much less sensitive to oxygen-induced degradation than the methylammonium-based perovskite cells, and that further improvements in perovskite solar cell stability should focus on the mitigation of trap generation during ageing.


ACS Nano | 2018

Dedopingof Lead Halide Perovskites IncorporatingMonovalent Cations

Mojtaba Abdi-Jalebi; Meysam Pazoki; Bertrand Philippe; M. Ibrahim Dar; Mejd Alsari; Aditya Sadhanala; Giorgio Divitini; Roghayeh Imani; Samuele Lilliu; Jolla Kullgren; Håkan Rensmo; Michael Grätzel; Richard H. Friend

We report significant improvements in the optoelectronic properties of lead halide perovskites with the addition of monovalent ions with ionic radii close to Pb2+. We investigate the chemical distribution and electronic structure of solution processed CH3NH3PbI3 perovskite structures containing Na+, Cu+, and Ag+, which are lower valence metal ions than Pb2+ but have similar ionic radii. Synchrotron X-ray diffraction reveals a pronounced shift in the main perovskite peaks for the monovalent cation-based films, suggesting incorporation of these cations into the perovskite lattice as well as a preferential crystal growth in Ag+ containing perovskite structures. Furthermore, the synchrotron X-ray photoelectron measurements show a significant change in the valence band position for Cu- and Ag-doped films, although the perovskite bandgap remains the same, indicating a shift in the Fermi level position toward the middle of the bandgap. Such a shift infers that incorporation of these monovalent cations dedope the n-type perovskite films when formed without added cations. This dedoping effect leads to cleaner bandgaps as reflected by the lower energetic disorder in the monovalent cation-doped perovskite thin films as compared to pristine films. We also find that in contrast to Ag+ and Cu+, Na+ locates mainly at the grain boundaries and surfaces. Our theoretical calculations confirm the observed shifts in X-ray diffraction peaks and Fermi level as well as absence of intrabandgap states upon energetically favorable doping of perovskite lattice by the monovalent cations. We also model a significant change in the local structure, chemical bonding of metal-halide, and the electronic structure in the doped perovskites. In summary, our work highlights the local chemistry and influence of monovalent cation dopants on crystallization and the electronic structure in the doped perovskite thin films.


Archive | 2018

Research data supporting "Dedoping of Lead Halide Perovskites Incorporating Monovalent Cations"

Mojtaba Abdi Jalebi; Meysam Pazoki; Bertrand Philippe; M. Ibrahim Dar; Mejd Alsari; Aditya Sadhanala; Giorgio Divitini; Roghayeh Imani; Samuele Lilliu; Jolla Kullgren; Håkan Rensmo; Michael Grätzel; Richard Henry Friend

Raw data files pertaining to the materials characterization, DFT calculations and solar cell measurements.


Next Generation Technologies for Solar Energy Conversion VII | 2016

Photon recycling in Lead-Iodide Perovskite solar cells(Conference Presentation)

Luis Pazos; Monika Szummilo; Robin Lamboll; Johannes M. Richter; Micaela Crespo-Quesada; Mojtaba Abdi-Jalebi; Harry J. Beeson; Milan Vrućinić; Mejd Alsari; Henry J. Snaith; Bruno Ehrler; Richard H. Friend; Felix Deschler

We mapped the propagation of photogenerated luminescence and charges from a local photoexcitation spot in thin films of lead tri-iodide perovskites using a confocal microscopy setup with independent excitation and collection objectives. We observed regenerated PL emission at distances as far as 50 micrometers away from photoexcitation. We then made a scratch in the film to increase out-scattering and found that the peak of the internal photon spectrum red-shifts from 765 to ≥800 nanometers. This is caused by the sharp decay of the absorption coefficient at the band tail, which allows longer wavelength photons to travel further between emission and absorption events, originating charges far from excitation. We then built a lateral-contact solar cell with selective electron- and hole-collecting contacts, using a combination of photolitography and electrodeposition. We used these devices as a platform to study photocurrent propagation and found that charge extraction can be achieved well beyond 50 micrometers away from the excitation. We connect these two observations by comparing the decay in intensity of the recycled component of the PL (which is around 765 nm) with the decay in photocurrent. Taking into account that PL is proportional to the square of charge density, whilst photocurrent is proportional to charge density. Photon recycling leads to an increase in internal photon densities, which leads to a build-up of excited charges. This increases the split of quasi-Fermi levels and enhances the achievable open circuit voltage in a solar cell.


Advanced Functional Materials | 2016

Mapping Morphological and Structural Properties of Lead Halide Perovskites by Scanning Nanofocus XRD

Samuele Lilliu; Thomas G. Dane; Mejd Alsari; Jonathan Griffin; Alexander T. Barrows; Marcus S. Dahlem; Richard H. Friend; David G. Lidzey; John Emyr MacDonald

Collaboration


Dive into the Mejd Alsari's collaboration.

Top Co-Authors

Avatar

Samuele Lilliu

Masdar Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcus S. Dahlem

Masdar Institute of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge