Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael A. Gillette is active.

Publication


Featured researches published by Michael A. Gillette.


Proceedings of the National Academy of Sciences of the United States of America | 2005

Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles

Aravind Subramanian; Pablo Tamayo; Vamsi K. Mootha; Sayan Mukherjee; Benjamin L. Ebert; Michael A. Gillette; Amanda G. Paulovich; Scott L. Pomeroy; Todd R. Golub; Eric S. Lander; Jill P. Mesirov

Although genomewide RNA expression analysis has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a powerful analytical method called Gene Set Enrichment Analysis (GSEA) for interpreting gene expression data. The method derives its power by focusing on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation. We demonstrate how GSEA yields insights into several cancer-related data sets, including leukemia and lung cancer. Notably, where single-gene analysis finds little similarity between two independent studies of patient survival in lung cancer, GSEA reveals many biological pathways in common. The GSEA method is embodied in a freely available software package, together with an initial database of 1,325 biologically defined gene sets.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses

Arindam Bhattacharjee; William G. Richards; Jane Staunton; Cheng Li; Stefano Monti; Priya Vasa; Christine Ladd; Javad Beheshti; Raphael Bueno; Michael A. Gillette; Massimo Loda; Griffin M. Weber; Eugene J. Mark; Eric S. Lander; Wing Hung Wong; Bruce E. Johnson; Todd R. Golub; David J. Sugarbaker; Matthew Meyerson

We have generated a molecular taxonomy of lung carcinoma, the leading cause of cancer death in the United States and worldwide. Using oligonucleotide microarrays, we analyzed mRNA expression levels corresponding to 12,600 transcript sequences in 186 lung tumor samples, including 139 adenocarcinomas resected from the lung. Hierarchical and probabilistic clustering of expression data defined distinct subclasses of lung adenocarcinoma. Among these were tumors with high relative expression of neuroendocrine genes and of type II pneumocyte genes, respectively. Retrospective analysis revealed a less favorable outcome for the adenocarcinomas with neuroendocrine gene expression. The diagnostic potential of expression profiling is emphasized by its ability to discriminate primary lung adenocarcinomas from metastases of extra-pulmonary origin. These results suggest that integration of expression profile data with clinical parameters could aid in diagnosis of lung cancer patients.


Nature Biotechnology | 2006

Protein biomarker discovery and validation: the long and uncertain path to clinical utility

Nader Rifai; Michael A. Gillette; Steven A. Carr

Better biomarkers are urgently needed to improve diagnosis, guide molecularly targeted therapy and monitor activity and therapeutic response across a wide spectrum of disease. Proteomics methods based on mass spectrometry hold special promise for the discovery of novel biomarkers that might form the foundation for new clinical blood tests, but to date their contribution to the diagnostic armamentarium has been disappointing. This is due in part to the lack of a coherent pipeline connecting marker discovery with well-established methods for validation. Advances in methods and technology now enable construction of a comprehensive biomarker pipeline from six essential process components: candidate discovery, qualification, verification, research assay optimization, biomarker validation and commercialization. Better understanding of the overall process of biomarker discovery and validation and of the challenges and strategies inherent in each phase should improve experimental study design, in turn increasing the efficiency of biomarker development and facilitating the delivery and deployment of novel clinical tests.


Proceedings of the National Academy of Sciences of the United States of America | 2005

From the Cover: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles

Aravind Subramanian; Pablo Tamayo; Vamsi K. Mootha; Sayan Mukherjee; Benjamin L. Ebert; Michael A. Gillette; Amanda G. Paulovich; Scott L. Pomeroy; Todd R. Golub; Eric S. Lander; Jill P. Mesirov

Although genomewide RNA expression analysis has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a powerful analytical method called Gene Set Enrichment Analysis (GSEA) for interpreting gene expression data. The method derives its power by focusing on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation. We demonstrate how GSEA yields insights into several cancer-related data sets, including leukemia and lung cancer. Notably, where single-gene analysis finds little similarity between two independent studies of patient survival in lung cancer, GSEA reveals many biological pathways in common. The GSEA method is embodied in a freely available software package, together with an initial database of 1,325 biologically defined gene sets.


Nature | 2014

Proteogenomic characterization of human colon and rectal cancer

Bing Zhang; Jing Wang; Xiaojing Wang; Jing Zhu; Qi Liu; Zhiao Shi; Matthew C. Chambers; Lisa J. Zimmerman; Kent Shaddox; Sangtae Kim; Sherri R. Davies; Sean Wang; Pei Wang; Christopher R. Kinsinger; Robert Rivers; Henry Rodriguez; R. Reid Townsend; Matthew J. Ellis; Steven A. Carr; David L. Tabb; Robert J. Coffey; Robbert J. C. Slebos; Daniel C. Liebler; Michael A. Gillette; Karl R. Klauser; Eric Kuhn; D. R. Mani; Philipp Mertins; Karen A. Ketchum; Amanda G. Paulovich

Extensive genomic characterization of human cancers presents the problem of inference from genomic abnormalities to cancer phenotypes. To address this problem, we analysed proteomes of colon and rectal tumours characterized previously by The Cancer Genome Atlas (TCGA) and perform integrated proteogenomic analyses. Somatic variants displayed reduced protein abundance compared to germline variants. Messenger RNA transcript abundance did not reliably predict protein abundance differences between tumours. Proteomics identified five proteomic subtypes in the TCGA cohort, two of which overlapped with the TCGA ‘microsatellite instability/CpG island methylation phenotype’ transcriptomic subtype, but had distinct mutation, methylation and protein expression patterns associated with different clinical outcomes. Although copy number alterations showed strong cis- and trans-effects on mRNA abundance, relatively few of these extend to the protein level. Thus, proteomics data enabled prioritization of candidate driver genes. The chromosome 20q amplicon was associated with the largest global changes at both mRNA and protein levels; proteomics data highlighted potential 20q candidates, including HNF4A (hepatocyte nuclear factor 4, alpha), TOMM34 (translocase of outer mitochondrial membrane 34) and SRC (SRC proto-oncogene, non-receptor tyrosine kinase). Integrated proteogenomic analysis provides functional context to interpret genomic abnormalities and affords a new paradigm for understanding cancer biology.


Nature | 2016

Proteogenomics connects somatic mutations to signalling in breast cancer

Philipp Mertins; D. R. Mani; Kelly V. Ruggles; Michael A. Gillette; Karl R. Clauser; Pei Wang; Xianlong Wang; Jana W. Qiao; Song Cao; Francesca Petralia; Emily Kawaler; Filip Mundt; Karsten Krug; Zhidong Tu; Jonathan T. Lei; Michael L. Gatza; Matthew D. Wilkerson; Charles M. Perou; Venkata Yellapantula; Kuan Lin Huang; Chenwei Lin; Michael D. McLellan; Ping Yan; Sherri R. Davies; R. Reid Townsend; Steven J. Skates; Jing Wang; Bing Zhang; Christopher R. Kinsinger; Mehdi Mesri

Summary Somatic mutations have been extensively characterized in breast cancer, but the effects of these genetic alterations on the proteomic landscape remain poorly understood. We describe quantitative mass spectrometry-based proteomic and phosphoproteomic analyses of 105 genomically annotated breast cancers of which 77 provided high-quality data. Integrated analyses allowed insights into the somatic cancer genome including the consequences of chromosomal loss, such as the 5q deletion characteristic of basal-like breast cancer. The 5q trans effects were interrogated against the Library of Integrated Network-based Cellular Signatures, thereby connecting CETN3 and SKP1 loss to elevated expression of EGFR, and SKP1 loss also to increased SRC. Global proteomic data confirmed a stromal-enriched group in addition to basal and luminal clusters and pathway analysis of the phosphoproteome identified a G Protein-coupled receptor cluster that was not readily identified at the mRNA level. Besides ERBB2, other amplicon-associated, highly phosphorylated kinases were identified, including CDK12, PAK1, PTK2, RIPK2 and TLK2. We demonstrate that proteogenomic analysis of breast cancer elucidates functional consequences of somatic mutations, narrows candidate nominations for driver genes within large deletions and amplified regions, and identifies therapeutic targets.


Nature Methods | 2013

Integrated proteomic analysis of post-translational modifications by serial enrichment

Philipp Mertins; Jana W. Qiao; Jinal Patel; Namrata D. Udeshi; Karl R. Clauser; D. R. Mani; Michael Burgess; Michael A. Gillette; Jacob D. Jaffe; Steven A. Carr

We report a mass spectrometry–based method for the integrated analysis of protein expression, phosphorylation, ubiquitination and acetylation by serial enrichments of different post-translational modifications (SEPTM) from the same biological sample. This technology enabled quantitative analysis of nearly 8,000 proteins and more than 20,000 phosphorylation, 15,000 ubiquitination and 3,000 acetylation sites per experiment, generating a holistic view of cellular signal transduction pathways as exemplified by analysis of bortezomib-treated human leukemia cells.


Nature Methods | 2013

Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry

Michael A. Gillette; Steven A. Carr

Targeted mass spectrometry (MS) is becoming widely used in academia and in pharmaceutical and biotechnology industries for sensitive and quantitative detection of proteins, peptides and post-translational modifications. Here we describe the increasing importance of targeted MS technologies in clinical proteomics and the potential key roles these techniques will have in bridging biomedical discovery and clinical implementation.


Molecular & Cellular Proteomics | 2009

A Human Proteome Detection and Quantitation Project

N. Leigh Anderson; Norman G. Anderson; Terry W. Pearson; Christoph H. Borchers; Amanda G. Paulovich; Scott D. Patterson; Michael A. Gillette; Ruedi Aebersold; Steven A. Carr

The lack of sensitive, specific, multiplexable assays for most human proteins is the major technical barrier impeding development of candidate biomarkers into clinically useful tests. Recent progress in mass spectrometry-based assays for proteotypic peptides, particularly those with specific affinity peptide enrichment, offers a systematic and economical path to comprehensive quantitative coverage of the human proteome. A complete suite of assays, e.g. two peptides from the protein product of each of the ∼20,500 human genes (here termed the human Proteome Detection and Quantitation project), would enable rapid and systematic verification of candidate biomarkers and lay a quantitative foundation for subsequent efforts to define the larger universe of splice variants, post-translational modifications, protein-protein interactions, and tissue localization.


Nature Biotechnology | 2011

A pipeline that integrates the discovery and verification of plasma protein biomarkers reveals candidate markers for cardiovascular disease

Terri Addona; Xu Shi; Hasmik Keshishian; D. R. Mani; Michael Burgess; Michael A. Gillette; Karl R. Clauser; Dongxiao Shen; Gregory D. Lewis; Laurie A. Farrell; Michael A. Fifer; Marc S. Sabatine; Robert E. Gerszten; Steven A. Carr

We developed a pipeline to integrate the proteomic technologies used from the discovery to the verification stages of plasma biomarker identification and applied it to identify early biomarkers of cardiac injury from the blood of patients undergoing a therapeutic, planned myocardial infarction (PMI) for treatment of hypertrophic cardiomyopathy. Sampling of blood directly from patient hearts before, during and after controlled myocardial injury ensured enrichment for candidate biomarkers and allowed patients to serve as their own biological controls. LC-MS/MS analyses detected 121 highly differentially expressed proteins, including previously credentialed markers of cardiovascular disease and >100 novel candidate biomarkers for myocardial infarction (MI). Accurate inclusion mass screening (AIMS) qualified a subset of the candidates based on highly specific, targeted detection in peripheral plasma, including some markers unlikely to have been identified without this step. Analyses of peripheral plasma from controls and patients with PMI or spontaneous MI by quantitative multiple reaction monitoring mass spectrometry or immunoassays suggest that the candidate biomarkers may be specific to MI. This study demonstrates that modern proteomic technologies, when coherently integrated, can yield novel cardiovascular biomarkers meriting further evaluation in large, heterogeneous cohorts.

Collaboration


Dive into the Michael A. Gillette's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karl R. Clauser

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. R. Mani

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

James E. Siegler

Hospital of the University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Karen C. Albright

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amanda G. Paulovich

Fred Hutchinson Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge