Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael D. Lee is active.

Publication


Featured researches published by Michael D. Lee.


Nature Communications | 2016

Mechanisms of increased Trichodesmium fitness under iron and phosphorus co-limitation in the present and future ocean

Nathan G. Walworth; Fei-Xue Fu; Eric A. Webb; Mak A. Saito; Dawn M. Moran; Matthew R. Mcllvin; Michael D. Lee; David A. Hutchins

Nitrogen fixation by cyanobacteria supplies critical bioavailable nitrogen to marine ecosystems worldwide; however, field and lab data have demonstrated it to be limited by iron, phosphorus and/or CO2. To address unknown future interactions among these factors, we grew the nitrogen-fixing cyanobacterium Trichodesmium for 1 year under Fe/P co-limitation following 7 years of both low and high CO2 selection. Fe/P co-limited cell lines demonstrated a complex cellular response including increased growth rates, broad proteome restructuring and cell size reductions relative to steady-state growth limited by either Fe or P alone. Fe/P co-limitation increased abundance of a protein containing a conserved domain previously implicated in cell size regulation, suggesting a similar role in Trichodesmium. Increased CO2 further induced nutrient-limited proteome shifts in widespread core metabolisms. Our results thus suggest that N2-fixing microbes may be significantly impacted by interactions between elevated CO2 and nutrient limitation, with broad implications for global biogeochemical cycles in the future ocean.


The ISME Journal | 2017

The Trichodesmium consortium: conserved heterotrophic co-occurrence and genomic signatures of potential interactions

Michael D. Lee; Nathan G. Walworth; Erin L McParland; Fei-Xue Fu; Tracy J. Mincer; Naomi M. Levine; David A. Hutchins; Eric A. Webb

The nitrogen (N)-fixing cyanobacterium Trichodesmium is globally distributed in warm, oligotrophic oceans, where it contributes a substantial proportion of new N and fuels primary production. These photoautotrophs form macroscopic colonies that serve as relatively nutrient-rich substrates that are colonized by many other organisms. The nature of these associations may modulate ocean N and carbon (C) cycling, and can offer insights into marine co-evolutionary mechanisms. Here we integrate multiple omics-based and experimental approaches to investigate Trichodesmium-associated bacterial consortia in both laboratory cultures and natural environmental samples. These efforts have identified the conserved presence of a species of Gammaproteobacteria (Alteromonas macleodii), and enabled the assembly of a near-complete, representative genome. Interorganismal comparative genomics between A. macleodii and Trichodesmium reveal potential interactions that may contribute to the maintenance of this association involving iron and phosphorus acquisition, vitamin B12 exchange, small C compound catabolism, and detoxification of reactive oxygen species. These results identify what may be a keystone organism within Trichodesmium consortia and support the idea that functional selection has a major role in structuring associated microbial communities. These interactions, along with likely many others, may facilitate Trichodesmium’s unique open-ocean lifestyle, and could have broad implications for oligotrophic ecosystems and elemental cycling.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Molecular and physiological evidence of genetic assimilation to high CO2 in the marine nitrogen fixer Trichodesmium

Nathan G. Walworth; Michael D. Lee; Fei-Xue Fu; David A. Hutchins; Eric A. Webb

Significance The free-living cyanobacterium Trichodesmium is an important nitrogen-fixer in the global oceans, yet virtually nothing is known about its molecular evolution to increased CO2. Here we show that Trichodesmium can fix a plastic, short-term response upon long-term adaptation, potentially through genetic assimilation. We provide transcriptional evidence for molecular mechanisms that parallel the fixation of the plastic phenotype, thereby demonstrating an important evolutionary capability in Trichodesmium CO2 adaptation. Transcriptional shifts involve transposition and other regulatory mechanisms (sigma factors) that control a variety of metabolic pathways, suggesting alterations in upstream regulation to be important under genetic assimilation. Together, these data highlight potential biochemical evidence of genetic assimilation in a keystone marine N2-fixer, with broad implications for microbial evolution and biogeochemistry. Most investigations of biogeochemically important microbes have focused on plastic (short-term) phenotypic responses in the absence of genetic change, whereas few have investigated adaptive (long-term) responses. However, no studies to date have investigated the molecular progression underlying the transition from plasticity to adaptation under elevated CO2 for a marine nitrogen-fixer. To address this gap, we cultured the globally important cyanobacterium Trichodesmium at both low and high CO2 for 4.5 y, followed by reciprocal transplantation experiments to test for adaptation. Intriguingly, fitness actually increased in all high-CO2 adapted cell lines in the ancestral environment upon reciprocal transplantation. By leveraging coordinated phenotypic and transcriptomic profiles, we identified expression changes and pathway enrichments that rapidly responded to elevated CO2 and were maintained upon adaptation, providing strong evidence for genetic assimilation. These candidate genes and pathways included those involved in photosystems, transcriptional regulation, cell signaling, carbon/nitrogen storage, and energy metabolism. Conversely, significant changes in specific sigma factor expression were only observed upon adaptation. These data reveal genetic assimilation as a potentially adaptive response of Trichodesmium and importantly elucidate underlying metabolic pathways paralleling the fixation of the plastic phenotype upon adaptation, thereby contributing to the few available data demonstrating genetic assimilation in microbial photoautotrophs. These molecular insights are thus critical for identifying pathways under selection as drivers in plasticity and adaptation.


Frontiers in Microbiology | 2015

Microbial Communities on Seafloor Basalts at Dorado Outcrop Reflect Level of Alteration and Highlight Global Lithic Clades

Michael D. Lee; Nathan G. Walworth; Jason B. Sylvan; Katrina J. Edwards; Beth N. Orcutt

Areas of exposed basalt along mid-ocean ridges and at seafloor outcrops serve as conduits of fluid flux into and out of a subsurface ocean, and microbe–mineral interactions can influence alteration reactions at the rock–water interface. Located on the eastern flank of the East Pacific Rise, Dorado Outcrop is a site of low-temperature (<20°C) hydrothermal venting and represents a new end-member in the current survey of seafloor basalt biomes. Consistent with prior studies, a survey of 16S rRNA gene sequence diversity using universal primers targeting the V4 hypervariable region revealed much greater richness and diversity on the seafloor rocks than in surrounding seawater. Overall, Gamma-, Alpha-, and Deltaproteobacteria, and Thaumarchaeota dominated the sequenced communities, together making up over half of the observed diversity, though bacterial sequences were more abundant than archaeal in all samples. The most abundant bacterial reads were closely related to the obligate chemolithoautotrophic, sulfur-oxidizing Thioprofundum lithotrophicum, suggesting carbon and sulfur cycling as dominant metabolic pathways in this system. Representatives of Thaumarchaeota were detected in relatively high abundance on the basalts in comparison to bottom water, possibly indicating ammonia oxidation. In comparison to other sequence datasets from globally distributed seafloor basalts, this study reveals many overlapping and cosmopolitan phylogenetic groups and also suggests that substrate age correlates with community structure.


Frontiers in Microbiology | 2016

Assessing Marine Microbial Induced Corrosion at Santa Catalina Island, California

Gustavo A. Ramírez; Colleen L. Hoffman; Michael D. Lee; Ryan A. Lesniewski; Roman A. Barco; Arkadiy Garber; Brandy M. Toner; C. G. Wheat; Katrina J. Edwards; Beth N. Orcutt

High iron and eutrophic conditions are reported as environmental factors leading to accelerated low-water corrosion, an enhanced form of near-shore microbial induced corrosion. To explore this hypothesis, we deployed flow-through colonization systems in laboratory-based aquarium tanks under a continuous flow of surface seawater from Santa Catalina Island, CA, USA, for periods of 2 and 6 months. Substrates consisted of mild steel – a major constituent of maritime infrastructure – and the naturally occurring iron sulfide mineral pyrite. Four conditions were tested: free-venting “high-flux” conditions; a “stagnant” condition; an “active” flow-through condition with seawater slowly pumped over the substrates; and an “enrichment” condition where the slow pumping of seawater was supplemented with nutrient rich medium. Electron microscopy analyses of the 2-month high flux incubations document coating of substrates with “twisted stalks,” resembling iron oxyhydroxide bioprecipitates made by marine neutrophilic Fe-oxidizing bacteria (FeOB). Six-month incubations exhibit increased biofilm and substrate corrosion in the active flow and nutrient enriched conditions relative to the stagnant condition. A scarcity of twisted stalks was observed for all 6 month slow-flow conditions compared to the high-flux condition, which may be attributable to oxygen concentrations in the slow-flux conditions being prohibitively low for sustained growth of stalk-producing bacteria. All substrates developed microbial communities reflective of the original seawater input, as based on 16S rRNA gene sequencing. Deltaproteobacteria sequences increased in relative abundance in the active flow and nutrient enrichment conditions, whereas Gammaproteobacteria sequences were relatively more abundant in the stagnant condition. These results indicate that (i) high-flux incubations with higher oxygen availability favor the development of biofilms with twisted stalks resembling those of marine neutrophilic FeOB and (ii) long-term nutrient stimulation results in substrate corrosion and biofilms with different bacterial community composition and structure relative to stagnant and non-nutritionally enhanced incubations. Similar microbial succession scenarios, involving increases in nutritional input leading to the proliferation of anaerobic iron and sulfur-cycling guilds, may occur at the nearby Port of Los Angeles and cause potential damage to maritime port infrastructure.


The ISME Journal | 2017

Energy and carbon metabolisms in a deep terrestrial subsurface fluid microbial community

Lily Momper; Sean P. Jungbluth; Michael D. Lee; Jan P. Amend

The terrestrial deep subsurface is a huge repository of microbial biomass, but in relation to its size and physical heterogeneity, few sites have been investigated in detail. Here, we applied a culture-independent metagenomic approach to characterize the microbial community composition in deep (1500 meters below surface) terrestrial fluids. Samples were collected from a former gold mine in Lead, South Dakota, USA, now Sanford Underground Research Facility (SURF). We reconstructed 74 genomes from metagenomes (MAGs), enabling the identification of common metabolic pathways. Sulfate and nitrate/nitrite reduction were the most common putative energy metabolisms. Complete pathways for autotrophic carbon fixation were found in more than half of the MAGs, with the reductive acetyl-CoA pathway by far the most common. Nearly 40% (29 of 74) of the recovered MAGs belong to bacterial phyla without any cultivated members—microbial dark matter. Three of our MAGs constitute two novel phyla previously only identified in 16 S rRNA gene surveys. The uniqueness of this data set—its physical depth in the terrestrial subsurface, the relative abundance and completeness of microbial dark matter genomes and the overall diversity of this physically deep, dark, community—make it an invaluable addition to our knowledge of deep subsurface microbial ecology.


Science | 2017

Comment on “The complex effects of ocean acidification on the prominent N2-fixing cyanobacterium Trichodesmium”

David A. Hutchins; Fei-Xue Fu; Nathan G. Walworth; Michael D. Lee; Mak A. Saito; Eric A. Webb

Hong et al. (Reports, 5 May 2017, p. 527) suggested that previous studies of the biogeochemically significant marine cyanobacterium Trichodesmium showing increased growth and nitrogen fixation at projected future high CO2 levels suffered from ammonia or copper toxicity. They reported that these rates instead decrease at high CO2 when contamination is alleviated. We present and discuss results of multiple published studies refuting this toxicity hypothesis.


Applied and Environmental Microbiology | 2018

Transcriptional Activities of the Microbial Consortium Living with the Marine Nitrogen-Fixing Cyanobacterium Trichodesmium Reveal Potential Roles in Community-Level Nitrogen Cycling

Michael D. Lee; Eric A. Webb; Nathan G. Walworth; Fei-Xue Fu; Noelle A. Held; Mak A. Saito; David A. Hutchins

ABSTRACT Trichodesmium is a globally distributed cyanobacterium whose nitrogen-fixing capability fuels primary production in warm oligotrophic oceans. Like many photoautotrophs, Trichodesmium serves as a host to various other microorganisms, yet little is known about how this associated community modulates fluxes of environmentally relevant chemical species into and out of the supraorganismal structure. Here, we utilized metatranscriptomics to examine gene expression activities of microbial communities associated with Trichodesmium erythraeum (strain IMS101) using laboratory-maintained enrichment cultures that have previously been shown to harbor microbial communities similar to those of natural populations. In enrichments maintained under two distinct CO2 concentrations for ∼8 years, the community transcriptional profiles were found to be specific to the treatment, demonstrating a restructuring of overall gene expression had occurred. Some of this restructuring involved significant increases in community respiration-related transcripts under elevated CO2, potentially facilitating the corresponding measured increases in host nitrogen fixation rates. Particularly of note, in both treatments, community transcripts involved in the reduction of nitrate, nitrite, and nitrous oxide were detected, suggesting the associated organisms may play a role in colony-level nitrogen cycling. Lastly, a taxon-specific analysis revealed distinct ecological niches of consistently cooccurring major taxa that may enable, or even encourage, the stable cohabitation of a diverse community within Trichodesmium consortia. IMPORTANCE Trichodesmium is a genus of globally distributed, nitrogen-fixing marine cyanobacteria. As a source of new nitrogen in otherwise nitrogen-deficient systems, these organisms help fuel carbon fixation carried out by other more abundant photoautotrophs and thereby have significant roles in global nitrogen and carbon cycling. Members of the Trichodesmium genus tend to form large macroscopic colonies that appear to perpetually host an association of diverse interacting microbes distinct from the surrounding seawater, potentially making the entire assemblage a unique miniature ecosystem. Since its first successful cultivation in the early 1990s, there have been questions about the potential interdependencies between Trichodesmium and its associated microbial community and whether the hosts seemingly enigmatic nitrogen fixation schema somehow involved or benefited from its epibionts. Here, we revisit these old questions with new technology and investigate gene expression activities of microbial communities living in association with Trichodesmium.


Frontiers in Microbiology | 2018

Jellyfish Life Stages Shape Associated Microbial Communities, While a Core Microbiome Is Maintained Across All

Michael D. Lee; Joshua D. Kling; Rubén Araya; Janja Ceh

The key to 650 million years of evolutionary success in jellyfish is adaptability: with alternating benthic and pelagic generations, sexual and asexual reproductive modes, multitudes of body forms and a cosmopolitan distribution, jellyfish are likely to have established a plenitude of microbial associations. Here we explored bacterial assemblages in the scyphozoan jellyfish Chrysaora plocamia (Lesson 1832). Life stages involved in propagation through cyst formation, i.e., the mother polyp, its dormant cysts (podocysts), and polyps recently excysted (excysts) from podocysts – were investigated. Associated bacterial assemblages were assessed using MiSeq Illumina paired-end tag sequencing of the V1V2 region of the 16S rRNA gene. A microbial core-community was identified as present through all investigated life stages, including bacteria with closest relatives known to be key drivers of carbon, nitrogen, phosphorus, and sulfur cycling. Moreover, the fact that half of C. plocamia’s core bacteria were also present in life stages of the jellyfish Aurelia aurita, suggests that this bacterial community might represent an intrinsic characteristic of scyphozoan jellyfish, contributing to their evolutionary success.


Frontiers in Microbiology | 2018

Functional genomics and phylogenetic evidence suggest genus-wide cobalamin production by the globally distributed marine nitrogen fixer Trichodesmium

Nathan G. Walworth; Michael D. Lee; Christopher Suffridge; Pingping Qu; Fei-Xue Fu; Mak A. Saito; Eric A. Webb; Sergio A. Sañudo-Wilhelmy; David A. Hutchins

Only select prokaryotes can biosynthesize vitamin B12 (i.e., cobalamins), but these organic co-enzymes are required by all microbial life and can be vanishingly scarce across extensive ocean biomes. Although global ocean genome data suggest cyanobacteria to be a major euphotic source of cobalamins, recent studies have highlighted that >95% of cyanobacteria can only produce a cobalamin analog, pseudo-B12, due to the absence of the BluB protein that synthesizes the α ligand 5,6-dimethylbenzimidizole (DMB) required to biosynthesize cobalamins. Pseudo-B12 is substantially less bioavailable to eukaryotic algae, as only certain taxa can intracellularly remodel it to one of the cobalamins. Here we present phylogenetic, metagenomic, transcriptomic, proteomic, and chemical analyses providing multiple lines of evidence that the nitrogen-fixing cyanobacterium Trichodesmium transcribes and translates the biosynthetic, cobalamin-requiring BluB enzyme. Phylogenetic evidence suggests that the Trichodesmium DMB biosynthesis gene, bluB, is of ancient origin, which could have aided in its ecological differentiation from other nitrogen-fixing cyanobacteria. Additionally, orthologue analyses reveal two genes encoding iron-dependent B12 biosynthetic enzymes (cbiX and isiB), suggesting that iron availability may be linked not only to new nitrogen supplies from nitrogen fixation, but also to B12 inputs by Trichodesmium. These analyses suggest that Trichodesmium contains the genus-wide genomic potential for a previously unrecognized role as a source of cobalamins, which may prove to considerably impact marine biogeochemical cycles.

Collaboration


Dive into the Michael D. Lee's collaboration.

Top Co-Authors

Avatar

Nathan G. Walworth

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

David A. Hutchins

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Eric A. Webb

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Fei-Xue Fu

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Mak A. Saito

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Beth N. Orcutt

Bigelow Laboratory For Ocean Sciences

View shared research outputs
Top Co-Authors

Avatar

Katrina J. Edwards

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Andrew D. Smith

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Arkadiy Garber

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge