Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael E. Mann is active.

Publication


Featured researches published by Michael E. Mann.


Nature | 1998

Global-scale temperature patterns and climate forcing over the past six centuries

Michael E. Mann; Raymond S. Bradley; Malcolm K. Hughes

Spatially resolved global reconstructions of annual surface temperature patterns over the past six centuries are based on the multivariate calibration of widely distributed high-resolution proxy climate indicators. Time-dependent correlations of the reconstructions with time-series records representing changes in greenhouse-gas concentrations, solar irradiance, and volcanic aerosols suggest that each of these factors has contributed to the climate variability of the past 400 years, with greenhouse gases emerging as the dominant forcing during the twentieth century. Northern Hemisphere mean annual temperatures for three of the past eight years are warmer than any other year since (at least) ad 1400.Spatially resolved global reconstructions of annual surface temperature patterns over the past six centuries are based on the multivariate calibration of widely distributed high-resolution proxy climate indicators. Time-dependent correlations of the reconstructions with time-series records representing changes in greenhouse-gas concentrations, solar irradiance, and volcanic aerosols suggest that each of these factors has contributed to the climate variability of the past 400 years, with greenhouse gases emerging as the dominant forcing during the twentieth century. Northern Hemisphere mean annual temperatures for three of the past eight years are warmer than any other year since (at least) ad 1400.


Geophysical Research Letters | 1999

Northern hemisphere temperatures during the past millennium: Inferences, uncertainties, and limitations

Michael E. Mann; Raymond S. Bradley; Malcolm K. Hughes

Building on recent studies, we attempt hemispheric temperature reconstructions with proxy data networks for the past millennium. We focus not just on the reconstructions, but the uncertainties therein, and important caveats. Though expanded uncertainties prevent decisive conclusions for the period prior to AD 1400, our results suggest that the latter 20th century is anomalous in the context of at least the past millennium. The 1990s was the warmest decade, and 1998 the warmest year, at moderately high levels of confidence. The 20th century warming counters a millennial-scale cooling trend which is consistent with long-term astronomical forcing.


Science | 2009

Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly

Michael E. Mann; Zhihua Zhang; Scott Rutherford; Raymond S. Bradley; Malcolm K. Hughes; Drew T. Shindell; Caspar M. Ammann; Greg Faluvegi; Fenbiao Ni

Patterns of Change The global climate record of the past 1500 years shows two long intervals of anomalous temperatures before the obvious anthropogenic warming of the 20th century: the warm Medieval Climate Anomaly between roughly 950 and 1250 A.D. and the Little Ice Age between around 1400 and 1700 A.D. It has become increasingly clear in recent years, however, that climate changes inevitably involve a complex pattern of regional changes, whose inhomogeneities contain valuable insights into the mechanisms that cause them. Mann et al. (p. 1256) analyzed proxy records of climate since 500 A.D. and compared their global patterns with model reconstructions. The results identify the large-scale processes—like El Niño and the North Atlantic Oscillation—that can account for the observations and suggest that dynamic responses to variable radiative forcing were their primary causes. The global pattern of warming that characterized the Medieval Climate Anomaly was a dynamical response to solar forcing. Global temperatures are known to have varied over the past 1500 years, but the spatial patterns have remained poorly defined. We used a global climate proxy network to reconstruct surface temperature patterns over this interval. The Medieval period is found to display warmth that matches or exceeds that of the past decade in some regions, but which falls well below recent levels globally. This period is marked by a tendency for La Niña–like conditions in the tropical Pacific. The coldest temperatures of the Little Ice Age are observed over the interval 1400 to 1700 C.E., with greatest cooling over the extratropical Northern Hemisphere continents. The patterns of temperature change imply dynamical responses of climate to natural radiative forcing changes involving El Niño and the North Atlantic Oscillation–Arctic Oscillation.


Climatic Change | 1996

Robust estimation of background noise and signal detection in climatic time series

Michael E. Mann; Jonathan M. Lees

We present a new technique for isolating climate signals in time series with a characteristic ‘red’ noise background which arises from temporal persistence. This background is estimated by a ‘robust’ procedure that, unlike conventional techniques, is largely unbiased by the presence of signals immersed in the noise. Making use of multiple-taper spectral analysis methods, the technique further provides for a distinction between purely harmonic (periodic) signals, and broader-band (‘quasiperiodic’) signals. The effectiveness of our signal detection procedure is demonstrated with synthetic examples that simulate a variety of possible periodic and quasiperiodic signals immersed in red noise. We apply our methodology to historical climate and paleoclimate time series examples. Analysis of a ≈ 3 million year sediment core reveals significant periodic components at known astronomical forcing periodicities and a significant quasiperiodic 100 year peak. Analysis of a roughly 1500 year tree-ring reconstruction of Scandinavian summer temperatures suggests significant quasiperiodic signals on a near-century timescale, an interdecadal 16–18 year timescale, within the interannual El Niño/Southern Oscillation (ENSO) band, and on a quasibiennial timescale. Analysis of the 144 year record of Great Salt Lake monthly volume change reveals a significant broad band of significant interdecadal variability, ENSO-timescale peaks, an annual cycle and its harmonics. Focusing in detail on the historical estimated global-average surface temperature record, we find a highly significant secular trend relative to the estimated red noise background, and weakly significant quasiperiodic signals within the ENSO band. Decadal and quasibiennial signals are marginally significant in this series.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia

Michael E. Mann; Zhihua Zhang; Malcolm K. Hughes; Raymond S. Bradley; Sonya K. Miller; Scott Rutherford; Fenbiao Ni

Following the suggestions of a recent National Research Council report [NRC (National Research Council) (2006) Surface Temperature Reconstructions for the Last 2,000 Years (Natl Acad Press, Washington, DC).], we reconstruct surface temperature at hemispheric and global scale for much of the last 2,000 years using a greatly expanded set of proxy data for decadal-to-centennial climate changes, recently updated instrumental data, and complementary methods that have been thoroughly tested and validated with model simulation experiments. Our results extend previous conclusions that recent Northern Hemisphere surface temperature increases are likely anomalous in a long-term context. Recent warmth appears anomalous for at least the past 1,300 years whether or not tree-ring data are used. If tree-ring data are used, the conclusion can be extended to at least the past 1,700 years, but with additional strong caveats. The reconstructed amplitude of change over past centuries is greater than hitherto reported, with somewhat greater Medieval warmth in the Northern Hemisphere, albeit still not reaching recent levels.


Nature | 2009

Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year

Eric J. Steig; David P. Schneider; Scott Rutherford; Michael E. Mann; Josefino C. Comiso; Drew T. Shindell

Assessments of Antarctic temperature change have emphasized the contrast between strong warming of the Antarctic Peninsula and slight cooling of the Antarctic continental interior in recent decades. This pattern of temperature change has been attributed to the increased strength of the circumpolar westerlies, largely in response to changes in stratospheric ozone. This picture, however, is substantially incomplete owing to the sparseness and short duration of the observations. Here we show that significant warming extends well beyond the Antarctic Peninsula to cover most of West Antarctica, an area of warming much larger than previously reported. West Antarctic warming exceeds 0.1 °C per decade over the past 50 years, and is strongest in winter and spring. Although this is partly offset by autumn cooling in East Antarctica, the continent-wide average near-surface temperature trend is positive. Simulations using a general circulation model reproduce the essential features of the spatial pattern and the long-term trend, and we suggest that neither can be attributed directly to increases in the strength of the westerlies. Instead, regional changes in atmospheric circulation and associated changes in sea surface temperature and sea ice are required to explain the enhanced warming in West Antarctica.


Eos, Transactions American Geophysical Union | 2006

Atlantic hurricane trends linked to climate change

Michael E. Mann; Kerry A. Emanuel

Increases in key measures of Atlantic hurricane activity over recent decades are believed to reflect, in large part, contemporaneous increases in tropical Atlantic warmth [e.g., Emanuel, 2005]. Some recent studies [e.g., Goldenberg et al., 2001] have attributed these increases to a natural climate cycle termed the Atlantic Multidecadal Oscillation (AMO), while other studies suggest that climate change may instead be playing the dominant role [Emanuel, 2005; Webster et al., 2005]. Using a formal statistical analysis to separate the estimated influences of anthropogenic climate change from possible natural cyclical influences, this article presents results indicating that anthropogenic factors are likely responsible for long-term trends in tropical Atlantic warmth and tropical cyclone activity. In addition, this analysis indicates that late twentieth century tropospheric aerosol cooling has offset a substantial fraction of anthropogenic warming in the region and has thus likely suppressed even greater potential increases in tropical cyclone activity.


Journal of Climate | 2005

Volcanic and Solar Forcing of the Tropical Pacific over the Past 1000 Years

Michael E. Mann; Mark A. Cane; Stephen E. Zebiak; Amy C. Clement

The response of El Nino to natural radiative forcing changes over the past 1000 yr is investigated based on numerical experiments employing the Zebiak–Cane model of the tropical Pacific coupled ocean– atmosphere system. Previously published empirical results demonstrating a statistically significant tendency toward El Nino conditions in response to past volcanic radiative forcing are reproduced in the model experiments. A combination of responses to past changes in volcanic and solar radiative forcing closely reproduces changes in the mean state and interannual variability in El Nino in past centuries recorded from fossil corals. The dynamics of El Nino thus appear to have played an important role in the response of the global climate to past changes in radiative forcing.


Global and Planetary Change | 2003

An overview of results from the Coupled Model Intercomparison Project

Curt Covey; Krishna AchutaRao; Ulrich Cubasch; P. D. Jones; Steven J. Lambert; Michael E. Mann; Thomas J. Phillips; Karl E. Taylor

Abstract The Coupled Model Intercomparison Project (CMIP) collects output from global coupled ocean–atmosphere general circulation models (coupled GCMs). Among other uses, such models are employed both to detect anthropogenic effects in the climate record of the past century and to project future climatic changes due to human production of greenhouse gases and aerosols. CMIP has archived output from both constant forcing (“control run”) and perturbed (1% per year increasing atmospheric carbon dioxide) simulations. This report summarizes results form 18 CMIP models. A third of the models refrain from employing ad hoc flux adjustments at the ocean–atmosphere interface. The new generation of non-flux-adjusted control runs are nearly as stable as—and agree with observations nearly as well as—the flux-adjusted models. Both flux-adjusted and non-flux-adjusted models simulate an overall level of natural internal climate variability that is within the bounds set by observations. These developments represent significant progress in the state of the art of climate modeling since the Second (1995) Scientific Assessment Report of the Intergovernmental Panel on Climate Change (IPCC; see Gates et al. [Gates, W.L., et al., 1996. Climate models—Evaluation. Climate Climate 1995: The Science of Climate Change, Houghton, J.T., et al. (Eds.), Cambridge Univ. Press, pp. 229–284]). In the increasing-CO2 runs, differences between different models, while substantial, are not as great as one might expect from earlier assessments that relied on equilibrium climate sensitivity.


Journal of Climate | 2002

A Well-Verified, Multiproxy Reconstruction of the Winter North Atlantic Oscillation Index since a.d. 1400*

Edward R. Cook; Rosanne D'Arrigo; Michael E. Mann

Abstract A new, well-verified, multiproxy reconstruction of the winter North Atlantic Oscillation (NAO) index is described that can be used to examine the variability of the NAO prior to twentieth century greenhouse forcing. It covers the period a.d. 1400–1979 and successfully verifies against independent estimates of the winter NAO index from European instrumental and noninstrumental data as far back as 1500. The best validation occurs at interannual timescales and the weakest at multidecadal periods. This result is a significant improvement over previous proxy-based estimates, which often failed to verify prior to 1850, and is related to the use of an extended reconstruction model calibration period that reduced an apparent bias in selected proxies associated with the impact of anomalous twentieth century winter NAO variability on climate teleconnections over North Atlantic sector land areas. Although twentieth century NAO variability is somewhat unusual, comparable periods of persistent positive-phase ...

Collaboration


Dive into the Michael E. Mann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raymond S. Bradley

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Gavin A. Schmidt

Goddard Institute for Space Studies

View shared research outputs
Top Co-Authors

Avatar

Byron A. Steinman

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Caspar M. Ammann

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Sonya K. Miller

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

P. D. Jones

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hugues Goosse

Université catholique de Louvain

View shared research outputs
Researchain Logo
Decentralizing Knowledge