Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael R. Tota is active.

Publication


Featured researches published by Michael R. Tota.


Proceedings of the National Academy of Sciences of the United States of America | 2002

A role for the melanocortin 4 receptor in sexual function

Lex H.T. Van der Ploeg; William J. Martin; Andrew D. Howard; Ravi P. Nargund; Christopher P. Austin; Xiao-Ming Guan; Jennifer E. Drisko; Iyassu K. Sebhat; Arthur A. Patchett; David J. Figueroa; Anthony G. DiLella; Brett Connolly; David H. Weinberg; Carina P. Tan; Oksana C. Palyha; Sheng-Shung Pong; Tanya MacNeil; Charles Rosenblum; Aurawan Vongs; Rui Tang; Hong Yu; Andreas Sailer; Tung Ming Fong; Cathy R.-R.C. Huang; Michael R. Tota; Ray Chang; Ralph A. Stearns; Constantin Tamvakopoulos; George J. Christ; Deborah L. Drazen

By using a combination of genetic, pharmacological, and anatomical approaches, we show that the melanocortin 4 receptor (MC4R), implicated in the control of food intake and energy expenditure, also modulates erectile function and sexual behavior. Evidence supporting this notion is based on several findings: (i) a highly selective non-peptide MC4R agonist augments erectile activity initiated by electrical stimulation of the cavernous nerve in wild-type but not Mc4r-null mice; (ii) copulatory behavior is enhanced by administration of a selective MC4R agonist and is diminished in mice lacking Mc4r; (iii) reverse transcription (RT)-PCR and non-PCR based methods demonstrate MC4R expression in rat and human penis, and rat spinal cord, hypothalamus, brainstem, pelvic ganglion (major autonomic relay center to the penis), but not in rat primary corpus smooth muscle cavernosum cells; and (iv) in situ hybridization of glans tissue from the human and rat penis reveal MC4R expression in nerve fibers and mechanoreceptors in the glans of the penis. Collectively, these data implicate the MC4R in the modulation of penile erectile function and provide evidence that MC4R-mediated proerectile responses may be activated through neuronal circuitry in spinal cord erectile centers and somatosensory afferent nerve terminals of the penis. Our results provide a basis for the existence of MC4R-controlled neuronal pathways that control sexual function.


European Journal of Pharmacology | 2002

The role of melanocortins in body weight regulation: opportunities for the treatment of obesity

Douglas J. MacNeil; Andrew D. Howard; Xiao-Ming Guan; Tung M. Fong; Ravi P. Nargund; Maria A. Bednarek; Mark T. Goulet; David H. Weinberg; Alison M. Strack; Donald J. Marsh; Howard Y. Chen; Chun-Pyn Shen; Airu S. Chen; Charles Rosenblum; Tanya MacNeil; Michael R. Tota; Euan MacIntyre; Lex H.T. Van der Ploeg

Five G-protein-coupled melanocortin receptors (MC(1)-MC(5)) are expressed in mammalian tissues. The melanocortin receptors support diverse physiological functions, including the regulation of hair color, adrenal function, energy homeostasis, feed efficiency, sebaceous gland lipid production and immune and sexual function. The melanocortins (adrenocorticotropic hormone (ACTH), alpha-melanocyte-stimulating hormone (alpha-MSH), beta-MSH and gamma-MSH) are agonist peptide ligands for the melanocortin receptors and these peptides are processed from the pre-prohormone proopiomelanocortin (POMC). Peptide antagonists for the melanocortin MC(1), MC(3) and MC(4) receptors include agouti-related protein (AgRP) and agouti. Diverse lines of evidence, including genetic and pharmacological data obtained in rodents and humans, support a role for the melanocortin MC(3) and MC(4) receptors in the regulation of energy homeostasis. Recent advances in the development of potent and selective peptide and non-peptide melanocortin receptor ligands are anticipated to help unravel the roles for the melanocortin receptors in humans and to accelerate the clinical use of small molecule melanocortin mimetics.


PLOS Genetics | 2010

Liver and Adipose Expression Associated SNPs are Enriched for Association to Type 2 Diabetes

Hua Zhong; John Beaulaurier; Pek Yee Lum; Cliona Molony; Xia Yang; Douglas J. MacNeil; Drew T. Weingarth; Bin Zhang; Danielle M. Greenawalt; Radu Dobrin; Ke Hao; Sangsoon Woo; Christine Fabre-Suver; Su Qian; Michael R. Tota; Mark P. Keller; Christina Kendziorski; Brian S. Yandell; Victor M. Castro; Alan D. Attie; Lee M. Kaplan; Eric E. Schadt

Genome-wide association studies (GWAS) have demonstrated the ability to identify the strongest causal common variants in complex human diseases. However, to date, the massive data generated from GWAS have not been maximally explored to identify true associations that fail to meet the stringent level of association required to achieve genome-wide significance. Genetics of gene expression (GGE) studies have shown promise towards identifying DNA variations associated with disease and providing a path to functionally characterize findings from GWAS. Here, we present the first empiric study to systematically characterize the set of single nucleotide polymorphisms associated with expression (eSNPs) in liver, subcutaneous fat, and omental fat tissues, demonstrating these eSNPs are significantly more enriched for SNPs that associate with type 2 diabetes (T2D) in three large-scale GWAS than a matched set of randomly selected SNPs. This enrichment for T2D association increases as we restrict to eSNPs that correspond to genes comprising gene networks constructed from adipose gene expression data isolated from a mouse population segregating a T2D phenotype. Finally, by restricting to eSNPs corresponding to genes comprising an adipose subnetwork strongly predicted as causal for T2D, we dramatically increased the enrichment for SNPs associated with T2D and were able to identify a functionally related set of diabetes susceptibility genes. We identified and validated malic enzyme 1 (Me1) as a key regulator of this T2D subnetwork in mouse and provided support for the association of this gene to T2D in humans. This integration of eSNPs and networks provides a novel approach to identify disease susceptibility networks rather than the single SNPs or genes traditionally identified through GWAS, thereby extracting additional value from the wealth of data currently being generated by GWAS.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Antidiabetic and antisteatotic effects of the selective fatty acid synthase (FAS) inhibitor platensimycin in mouse models of diabetes

Margaret Wu; Sheo B. Singh; Jun Wang; Christine C. Chung; Gino Salituro; Bindhu V. Karanam; Sang Ho Lee; Maryann Powles; Kenneth Ellsworth; Corey N. Miller; Robert W. Myers; Michael R. Tota; Bei B. Zhang; Cai Li

Platensimycin (PTM) is a recently discovered broad-spectrum antibiotic produced by Streptomyces platensis. It acts by selectively inhibiting the elongation-condensing enzyme FabF of the fatty acid biosynthesis pathway in bacteria. We report here that PTM is also a potent and highly selective inhibitor of mammalian fatty acid synthase. In contrast to two agents, C75 and cerulenin, that are widely used as inhibitors of mammalian fatty acid synthase, platensimycin specifically inhibits fatty acid synthesis but not sterol synthesis in rat primary hepatocytes. PTM preferentially concentrates in liver when administered orally to mice and potently inhibits hepatic de novo lipogenesis, reduces fatty acid oxidation, and increases glucose oxidation. Chronic administration of platensimycin led to a net reduction in liver triglyceride levels and improved insulin sensitivity in db/+ mice fed a high-fructose diet. PTM also reduced ambient glucose levels in db/db mice. These results provide pharmacological proof of concept of inhibiting fatty acid synthase for the treatment of diabetes and related metabolic disorders in animal models.


Clinical Cancer Research | 2008

Control of cell growth and survival by enzymes of the fatty acid synthesis pathway in HCT-116 colon cancer cells.

Yanai Zhan; Nicole Ginanni; Michael R. Tota; Margaret Wu; Nathan Bays; Victoria M. Richon; Nancy E. Kohl; Eric Bachman; Peter Strack; Stefan Krauss

Purpose: For many tumor cells, de novo lipogenesis is a requirement for growth and survival. A considerable body of work suggests that inhibition of this pathway may be a powerful approach to antineoplastic therapy. It has recently been shown that inhibition of various steps in the lipogenic pathway individually can induce apoptosis or loss of viability in tumor cells. However, it is not clear whether quantitative differences exist in the ability of lipogenic enzymes to control tumor cell survival. We present a systematic approach that allows for a direct comparison of the control of lipogenic pathway enzymes over tumor cell growth and apoptosis using different cancer cells. Experimental Design: RNA interference-mediated, graded down-regulation of fatty acid synthase (FAS) pathway enzymes was employed in combination with measurements of lipogenesis, apoptosis, and cell growth. Results: In applying RNA interference titrations to two lipogenic enzymes, acetyl-CoA carboxylase 1 (ACC1) and FAS, we show that ACC1 and FAS both significantly control cell growth and apoptosis in HCT-116 cells. These results also extend to PC-3 and A2780 cancer cells. Conclusions: Control of tumor cell survival by different steps in de novo lipogenesis can be quantified. Because ACC1 and FAS both significantly control tumor cell growth and apoptosis, we propose that pharmacologic inhibitors of either enzyme might be useful agents in targeting cancer cells that critically rely on fatty acid synthesis. The experimental approach described here may be extended to other targets or disease-relevant pathways to identify steps suitable for therapeutic intervention.


Journal of Neuroendocrinology | 2002

Plasma Agouti‐Related Protein Level: A Possible Correlation with Fasted and Fed States in Humans and Rats

Chun-Pyn Shen; K. K. Wu; Lauren P. Shearman; Ramon Camacho; Michael R. Tota; Tung Ming Fong; L.H.T Van der Ploeg

We measured plasma concentrations of agouti‐related protein (AGRP) in humans and rats and determined whether these were affected by ingestion of a meal after fasting. In 17 healthy human subjects, the mean plasma concentration of AGRP was lower in the fed state than in the fasted state. Two hours after a breakfast meal, AGRP levels dropped by 39%. By contrast, a continued fast for 2 h increased the average AGRP concentration by 73%. In rats with diet‐induced obesity, refeeding resulted in a 50% decrease in plasma AGRP concentrations following a fasting‐refeeding protocol. Our results support the notion that plasma AGRP may serve as a biomarker for the transition from a fasted to the satiated state.


Journal of Biological Chemistry | 1995

Interaction of [fluorescein-Trp25]glucagon with the human glucagon receptor expressed in Drosophila Schneider 2 cells.

Michael R. Tota; Lei Xu; Anna Sirotina; Catherine D. Strader; Michael P. Graziano

The human glucagon receptor was expressed at high density in Drosophila Schneider 2 (S2) cells. Following selection with G418 and induction with CuSO4, the cells expressed the receptor at a level of 250 pmol/mg of membrane protein. The glucagon receptor was functionally coupled to increases in cyclic AMP in S2 cells. Protein immunoblotting with anti-peptide antibodies revealed the expressed receptor to have an apparent molecular mass of 48 kDa, consistent with low levels of glycosylation in this insect cell system. Binding of [fluorescein-Trp25]glucagon to S2 cells expressing the glucagon receptor was monitored as an increase in fluorescence anisotropy along with an increase in fluorescence intensity. Anisotropy data suggest that the mobility of the fluorescein is restricted when the ligand is bound to the receptor. Kinetic analysis indicates that the binding of glucagon to its receptor proceeds via a bimolecular interaction, with a forward rate constant that is several orders of magnitude slower than diffusion-controlled. These data would be consistent with a conformational change upon the binding of agonist to the receptor. The combination of [fluorescein-Trp25]glucagon with the S2 cell expression system should be useful for analyzing glucagon receptor structure and function.


Molecular and Cellular Endocrinology | 1998

A rapid, quantitative functional assay for measuring leptin

Charles Rosenblum; Aurawan Vongs; Michael R. Tota; Jeffrey P. Varnerin; Easter G. Frazier; Doris F. Cully; Manal A Morsy; Lex H.T Van der Ploeg

At present, leptin is quantitated using immuno-assays that measure leptin mass. Leptin biological activity is determined using protocols that measure feed consumption and weight reduction. These in vivo protocols are semi-quantitative and require large quantities of leptin. We describe a rapid, sensitive and quantitative in vitro assay for leptin using HEK-293 cells stably co-transfected with the leptin receptor Ob-Rb isoform and a STAT-inducible promoter regulating the firefly luciferase cDNA. The assay, performed in a 96-well format, has an EC50 of 150 pM and is linear from 3 to 700 pM of leptin. We demonstrate that the assay is capable of measuring leptin in plasma samples. We demonstrate that bacterially-expressed, recombinant leptin and in vivo expressed leptin are equipotent. Furthermore, we demonstrate that a leptin-derived peptide, leptin fragment 22-56, previously shown to be capable of reducing feed intake following ICV injection does not act directly through the leptin receptor.


Bioorganic & Medicinal Chemistry Letters | 2009

Discovery and optimization of novel 4-[(aminocarbonyl)amino]-N-[4-(2-aminoethyl)phenyl]benzenesulfonamide ghrelin receptor antagonists.

Alexander Pasternak; Stephen D. Goble; Reynalda Dejesus; Donna L. Hreniuk; Christine C. Chung; Michael R. Tota; Paul Mazur; Scott D. Feighner; Andrew D. Howard; Sander G. Mills; Lihu Yang

This Letter describes optimization of ghrelin receptor antagonists and inverse agonists starting from a screening hit.


Journal of Receptors and Signal Transduction | 1996

Purification and Reconstitution of a Recombinant Human Neurokinin-1 Receptor

Kathryn E. Mazina; Catherine D. Strader; Michael R. Tota; Selwyn Daniel; Tung Ming Fong

Recombinant human neurokinin-1 receptors expressed in insect cells have been purified to near homogeneity by sequential metal-chelating chromatography and gel filtration chromatography. The purified receptor consists of a single polypeptide with an apparent molecular weight of 50 kD as revealed by SDS gel electrophoresis, and exhibits a specific activity of 19 nmol of L-703,606 bound per mg of protein. Immunoblot experiments further confirm the identity of the stained protein band. The purified receptor binds the antagonist L-703,606 with an affinity similar to that of native human neurokinin-1 receptor, and binds the agonist substance P with an affinity similar to that of the low affinity state of uncoupled native receptor. The purified receptor can be reconstituted with membranes from uninfected insect cells, and the reconstitution results in an increased affinity for substance P, consistent with the reappearance of the high affinity state of the receptor for agonist in the presence of endogenous G proteins. These data indicate that the purified neurokinin-1 receptor is functional with respect to agonist and antagonist binding and G protein coupling.

Collaboration


Dive into the Michael R. Tota's collaboration.

Researchain Logo
Decentralizing Knowledge