Michelle Moksa
University of British Columbia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michelle Moksa.
Nature Genetics | 2010
Ryan D. Morin; Nathalie A. Johnson; Tesa Severson; Andrew J. Mungall; Jianghong An; Rodrigo Goya; Jessica E. Paul; Merrill Boyle; Bruce Woolcock; Florian Kuchenbauer; Damian Yap; R. Keith Humphries; Obi L. Griffith; Sohrab P. Shah; Henry Zhu; Michelle Kimbara; Pavel Shashkin; Jean F Charlot; Marianna Tcherpakov; Richard Corbett; Angela Tam; Richard Varhol; Duane E. Smailus; Michelle Moksa; Yongjun Zhao; Allen Delaney; Hong Qian; Inanc Birol; Jacqueline E. Schein; Richard A. Moore
Follicular lymphoma (FL) and the GCB subtype of diffuse large B-cell lymphoma (DLBCL) derive from germinal center B cells. Targeted resequencing studies have revealed mutations in various genes encoding proteins in the NF-κB pathway that contribute to the activated B-cell (ABC) DLBCL subtype, but thus far few GCB-specific mutations have been identified. Here we report recurrent somatic mutations affecting the polycomb-group oncogene EZH2, which encodes a histone methyltransferase responsible for trimethylating Lys27 of histone H3 (H3K27). After the recent discovery of mutations in KDM6A (UTX), which encodes the histone H3K27me3 demethylase UTX, in several cancer types, EZH2 is the second histone methyltransferase gene found to be mutated in cancer. These mutations, which result in the replacement of a single tyrosine in the SET domain of the EZH2 protein (Tyr641), occur in 21.7% of GCB DLBCLs and 7.2% of FLs and are absent from ABC DLBCLs. Our data are consistent with the notion that EZH2 proteins with mutant Tyr641 have reduced enzymatic activity in vitro.
Nature | 2011
Ryan D. Morin; Maria Mendez-Lago; Andrew J. Mungall; Rodrigo Goya; Karen Mungall; Richard Corbett; Nathalie A. Johnson; Tesa Severson; Readman Chiu; Matthew A. Field; Shaun D. Jackman; Martin Krzywinski; David W. Scott; Diane L. Trinh; Jessica Tamura-Wells; Sa Li; Marlo Firme; Sanja Rogic; Malachi Griffith; Susanna Chan; Oleksandr Yakovenko; Irmtraud M. Meyer; Eric Zhao; Duane E. Smailus; Michelle Moksa; Lisa M. Rimsza; Angela Brooks-Wilson; John J. Spinelli; Susana Ben-Neriah; Barbara Meissner
Follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL) are the two most common non-Hodgkin lymphomas (NHLs). Here we sequenced tumour and matched normal DNA from 13 DLBCL cases and one FL case to identify genes with mutations in B-cell NHL. We analysed RNA-seq data from these and another 113 NHLs to identify genes with candidate mutations, and then re-sequenced tumour and matched normal DNA from these cases to confirm 109 genes with multiple somatic mutations. Genes with roles in histone modification were frequent targets of somatic mutation. For example, 32% of DLBCL and 89% of FL cases had somatic mutations in MLL2, which encodes a histone methyltransferase, and 11.4% and 13.4% of DLBCL and FL cases, respectively, had mutations in MEF2B, a calcium-regulated gene that cooperates with CREBBP and EP300 in acetylating histones. Our analysis suggests a previously unappreciated disruption of chromatin biology in lymphomagenesis.
Emerging Infectious Diseases | 2004
Martin Hirst; Caroline R. Astell; Malachi Griffith; Shaun M. Coughlin; Michelle Moksa; Thomas Zeng; Duane E. Smailus; Robert A. Holt; Steven J.M. Jones; Marco A. Marra; Martin Petric; Mel Krajden; David Lawrence; Annie Mak; Ron Chow; Danuta M. Skowronski; S. Aleina Tweed; Swee-Han Goh; Robert C. Brunham; John Robinson; Victoria Bowes; Ken Sojonky; Sean K. Byrne; Yan Li; Darwyn Kobasa; Timothy F. Booth; Mark Paetzel
Genome sequences of chicken (low pathogenic avian influenza [LPAI] and highly pathogenic avian influenza [HPAI]) and human isolates from a 2004 outbreak of H7N3 avian influenza in Canada showed a novel insertion in the HA0 cleavage site of the human and HPAI isolate. This insertion likely occurred by recombination between the hemagglutination and matrix genes in the LPAI virus.
Cell Stem Cell | 2014
Long V. Nguyen; Maisam Makarem; Annaick Carles; Michelle Moksa; Nagarajan Kannan; Pawan Pandoh; Peter Eirew; Tomo Osako; Melanie D. Kardel; Alice M.S. Cheung; William Kennedy; Kane Tse; Thomas Zeng; Yongjun Zhao; R. Keith Humphries; Samuel Aparicio; Connie J. Eaves; Martin Hirst
Cellular barcoding offers a powerful approach to characterize the growth and differentiation activity of large numbers of cotransplanted stem cells. Here, we describe a lentiviral genomic-barcoding and analysis strategy and its use to compare the clonal outputs of transplants of purified mouse and human basal mammary epithelial cells. We found that both sources of transplanted cells produced many bilineage mammary epithelial clones in primary recipients, although primary clones containing only one detectable mammary lineage were also common. Interestingly, regardless of the species of origin, many clones evident in secondary recipients were not detected in the primary hosts, and others that were changed from appearing luminal-restricted to appearing bilineage. This barcoding methodology has thus revealed conservation between mice and humans of a previously unknown diversity in the growth and differentiation activities of their basal mammary epithelial cells stimulated to grow in transplanted hosts.
Nature | 2017
Xiaoyang Lan; David J. Jörg; Florence M.G. Cavalli; Laura M. Richards; Long V. Nguyen; Robert Vanner; Paul Guilhamon; Lilian Lee; Michelle Kushida; Davide Pellacani; Nicole I. Park; Fiona J. Coutinho; Heather Whetstone; Hayden Selvadurai; Clare Che; Betty Luu; Annaick Carles; Michelle Moksa; Naghmeh Rastegar; Renee Head; Sonam Dolma; Panagiotis Prinos; Michael D. Cusimano; Sunit Das; Mark Bernstein; C.H. Arrowsmith; Andrew J. Mungall; Richard A. Moore; Yussanne Ma; Marco Gallo
Human glioblastomas harbour a subpopulation of glioblastoma stem cells that drive tumorigenesis. However, the origin of intratumoural functional heterogeneity between glioblastoma cells remains poorly understood. Here we study the clonal evolution of barcoded glioblastoma cells in an unbiased way following serial xenotransplantation to define their individual fate behaviours. Independent of an evolving mutational signature, we show that the growth of glioblastoma clones in vivo is consistent with a remarkably neutral process involving a conserved proliferative hierarchy rooted in glioblastoma stem cells. In this model, slow-cycling stem-like cells give rise to a more rapidly cycling progenitor population with extensive self-maintenance capacity, which in turn generates non-proliferative cells. We also identify rare ‘outlier’ clones that deviate from these dynamics, and further show that chemotherapy facilitates the expansion of pre-existing drug-resistant glioblastoma stem cells. Finally, we show that functionally distinct glioblastoma stem cells can be separately targeted using epigenetic compounds, suggesting new avenues for glioblastoma-targeted therapy.
Nature Communications | 2014
Long V. Nguyen; Claire L. Cox; Peter Eirew; David J.H.F. Knapp; Davide Pellacani; Nagarajan Kannan; Annaick Carles; Michelle Moksa; Sneha Balani; Sohrab P. Shah; Martin Hirst; Samuel Aparicio; Connie J. Eaves
Genomic and phenotypic analyses indicate extensive intra- as well as intertumoral heterogeneity in primary human malignant cell populations despite their clonal origin. Cellular DNA barcoding offers a powerful and unbiased alternative to track the number and size of multiple subclones within a single human tumour xenograft and their response to continued in vivo passaging. Using this approach we find clone-initiating cell frequencies that vary from ~1/10 to ~1/10,000 cells transplanted for two human breast cancer cell lines and breast cancer xenografts derived from three different patients. For the cell lines, these frequencies are negatively affected in transplants of more than 20,000 cells. Serial transplants reveal five clonal growth patterns (unchanging, expanding, diminishing, fluctuating or of delayed onset), whose predominance is highly variable both between and within original samples. This study thus demonstrates the high growth potential and diverse growth properties of xenografted human breast cancer cells.
Nature Communications | 2015
Philippe Gascard; Misha Bilenky; Mahvash Sigaroudinia; Jianxin Zhao; Luolan Li; Annaick Carles; Allen Delaney; Angela Tam; Baljit Kamoh; Stephanie Cho; Malachi Griffith; Andy Chu; Gordon Robertson; Dorothy Cheung; Irene Li; Alireza Heravi-Moussavi; Michelle Moksa; Matthew Mingay; Angela Hussainkhel; Brad H. Davis; Raman P. Nagarajan; Chibo Hong; Lorigail Echipare; Henriette O'Geen; Matthew J. Hangauer; Jeffrey B. Cheng; Dana S. Neel; Donglei Hu; Michael T. McManus; Richard A. Moore
While significant effort has been dedicated to the characterization of epigenetic changes associated with prenatal differentiation, relatively little is known about the epigenetic changes that accompany post-natal differentiation where fully functional differentiated cell types with limited lifespans arise. Here we sought to address this gap by generating epigenomic and transcriptional profiles from primary human breast cell types isolated from disease-free human subjects. From these data we define a comprehensive human breast transcriptional network, including a set of myoepithelial- and luminal epithelial-specific intronic retention events. Intersection of epigenetic states with RNA expression from distinct breast epithelium lineages demonstrates that mCpG provides a stable record of exonic and intronic usage, whereas H3K36me3 is dynamic. We find a striking asymmetry in epigenomic reprogramming between luminal and myoepithelial cell types, with the genomes of luminal cells harbouring more than twice the number of hypomethylated enhancer elements compared with myoepithelial cells.
Genome Biology | 2007
Martin Hirst; Allen Delaney; Sean Rogers; Angelique Schnerch; Deryck R Persaud; Michael D. O'Connor; Thomas Zeng; Michelle Moksa; Keith Fichter; Diana Mah; Anne Go; Ryan D. Morin; Agnes Baross; Yongjun Zhao; Jaswinder Khattra; Anna-Liisa Prabhu; Pawan Pandoh; Helen McDonald; Jennifer Asano; Noreen Dhalla; Kevin Ma; Stephanie Lee; Adrian Ally; Neil Chahal; Stephanie Menzies; Asim Siddiqui; Robert A. Holt; Steven J.M. Jones; Daniela S. Gerhard; James A. Thomson
To facilitate discovery of novel human embryonic stem cell (ESC) transcripts, we generated 2.5 million LongSAGE tags from 9 human ESC lines. Analysis of this data revealed that ESCs express proportionately more RNA binding proteins compared with terminally differentiated cells, and identified novel ESC transcripts, at least one of which may represent a marker of the pluripotent state.
Cell Reports | 2016
Davide Pellacani; Misha Bilenky; Nagarajan Kannan; Alireza Heravi-Moussavi; David J.H.F. Knapp; Sitanshu Gakkhar; Michelle Moksa; Annaick Carles; Richard A. Moore; Andrew J. Mungall; Marco A. Marra; Steven J.M. Jones; Samuel Aparicio; Martin Hirst; Connie J. Eaves
The normal adult human mammary gland is a continuous bilayered epithelial system. Bipotent and myoepithelial progenitors are prominent and unique components of the outer (basal) layer. The inner (luminal) layer includes both luminal-restricted progenitors and a phenotypically separable fraction that lacks progenitor activity. We now report an epigenomic comparison of these three subsets with one another, with their associated stromal cells, and with three immortalized, non-tumorigenic human mammary cell lines. Each genome-wide analysis contains profiles for six histone marks, methylated DNA, and RNA transcripts. Analysis of these datasets shows that each cell type has unique features, primarily within genomic regulatory regions, and that the cell lines group together. Analyses of the promoter and enhancer profiles place the luminal progenitors in between the basal cells and the non-progenitor luminal subset. Integrative analysis reveals networks of subset-specific transcription factors.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Kaston Leung; Anders Klaus; Bill K. Lin; Emma Laks; Justina Biele; Daniel Lai; Ali Bashashati; Yi-Fei Huang; Radhouane Aniba; Michelle Moksa; Adi Steif; Anne-Marie Mes-Masson; Martin Hirst; Sohrab P. Shah; Samuel Aparicio; Carl Hansen
Significance The study of cell-to-cell genomic differences in complex multicellular systems such as cancer requires genome sequencing of large numbers of single cells. This in turn necessitates the uniform amplification of single-cell genomes with high reproducibility across large numbers of cells, which remains an outstanding challenge. Here, we introduce a method that uses commercially available liquid dispensing to perform inexpensive and high-throughput single-cell whole genome amplification (WGA) in nanoliter volumes. For the first time, to our knowledge, we demonstrate robust and highly uniform nanoliter-volume single-cell WGA across a large replicate set consisting of more than 100 single cells. Comparison with previous datasets shows that this method improves uniformity and achieves levels of genome coverage and genomic variant detection comparable or superior to existing methods. The genomes of large numbers of single cells must be sequenced to further understanding of the biological significance of genomic heterogeneity in complex systems. Whole genome amplification (WGA) of single cells is generally the first step in such studies, but is prone to nonuniformity that can compromise genomic measurement accuracy. Despite recent advances, robust performance in high-throughput single-cell WGA remains elusive. Here, we introduce droplet multiple displacement amplification (MDA), a method that uses commercially available liquid dispensing to perform high-throughput single-cell MDA in nanoliter volumes. The performance of droplet MDA is characterized using a large dataset of 129 normal diploid cells, and is shown to exceed previously reported single-cell WGA methods in amplification uniformity, genome coverage, and/or robustness. We achieve up to 80% coverage of a single-cell genome at 5× sequencing depth, and demonstrate excellent single-nucleotide variant (SNV) detection using targeted sequencing of droplet MDA product to achieve a median allelic dropout of 15%, and using whole genome sequencing to achieve false and true positive rates of 9.66 × 10−6 and 68.8%, respectively, in a G1-phase cell. We further show that droplet MDA allows for the detection of copy number variants (CNVs) as small as 30 kb in single cells of an ovarian cancer cell line and as small as 9 Mb in two high-grade serous ovarian cancer samples using only 0.02× depth. Droplet MDA provides an accessible and scalable method for performing robust and accurate CNV and SNV measurements on large numbers of single cells.