Midori A. Harris
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Midori A. Harris.
Nature Genetics | 2000
Michael Ashburner; Catherine A. Ball; Judith A. Blake; David Botstein; Heather L. Butler; J. Michael Cherry; Allan Peter Davis; Kara Dolinski; Selina S. Dwight; Janan T. Eppig; Midori A. Harris; David P. Hill; Laurie Issel-Tarver; Andrew Kasarskis; Suzanna E. Lewis; John C. Matese; Joel E. Richardson; Martin Ringwald; Gerald M. Rubin; Gavin Sherlock
Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
Nucleic Acids Research | 2004
Midori A. Harris; Jennifer I. Clark; Amelia Ireland; Jane Lomax; Michael Ashburner; R. Foulger; K. Eilbeck; Suzanna E. Lewis; B. Marshall; Christopher J. Mungall; John Richter; Gerald M. Rubin; Judith A. Blake; Mary E. Dolan; Harold J. Drabkin; Janan T. Eppig; David P. Hill; Li Ni; Martin Ringwald; Rama Balakrishnan; J. M. Cherry; Karen R. Christie; Maria C. Costanzo; Selina S. Dwight; Stacia R. Engel; Dianna G. Fisk; Jodi E. Hirschman; Eurie L. Hong; Robert S. Nash; Anand Sethuraman
The Gene Ontology (GO) project (http://www. geneontology.org/) provides structured, controlled vocabularies and classifications that cover several domains of molecular and cellular biology and are freely available for community use in the annotation of genes, gene products and sequences. Many model organism databases and genome annotation groups use the GO and contribute their annotation sets to the GO resource. The GO database integrates the vocabularies and contributed annotations and provides full access to this information in several formats. Members of the GO Consortium continually work collectively, involving outside experts as needed, to expand and update the GO vocabularies. The GO Web resource also provides access to extensive documentation about the GO project and links to applications that use GO data for functional analyses.
Methods in Enzymology | 2002
Laurie Issel-Tarver; Karen R. Christie; Kara Dolinski; Rey Andrada; Rama Balakrishnan; Catherine A. Ball; Gail Binkley; Stan Dong; Selina S. Dwight; Dianna G. Fisk; Midori A. Harris; Mark Schroeder; Anand Sethuraman; Kane Tse; Shuai Weng; David Botstein; J. Michael Cherry
Publisher Summary The goal of the Saccharomyces Genome Database (SGD) is to provide information about the genome of this yeast, the genes it encodes, and their biological functions. The genome sequence of S. cerevisiae provides the structure around which information in SGD is organized; value is added to the sequence by careful biological annotation drawn from a number of sources. SGD curates and stores information about budding yeast DNA and protein sequences, genetics, cell biology, and the associated community of researchers. SGD also provides search and analysis tools designed to help researchers mine the data for pieces or patterns of biological information relevant to their interests. A continuing challenge for the staff of SGD is to present up-to-date information about yeast genes in a format that is intuitive and useful to biomedical researchers, while responding to the needs of this community by providing resources and tools for exploring the data in new ways. This chapter describes the organization of SGD, the sources of the data stored in SGD, some methods for retrieving information from the database, connections SGD has with outside databases and non-yeast research communities, and SGDs repository of yeast community information.
Nucleic Acids Research | 2008
Midori A. Harris; Jennifer I. Deegan; Amelia Ireland; Jane Lomax; Michael Ashburner; Susan Tweedie; Seth Carbon; Suzanna E. Lewis; Christopher J. Mungall; John Richter; Karen Eilbeck; Judith A. Blake; Alexander D. Diehl; Mary E. Dolan; Harold Drabkin; Janan T. Eppig; David P. Hill; Ni Li; Martin Ringwald; Rama Balakrishnan; Gail Binkley; J. Michael Cherry; Karen R. Christie; Maria C. Costanzo; Qing Dong; Stacia R. Engel; Dianna G. Fisk; Jodi E. Hirschman; Benjamin C. Hitz; Eurie L. Hong
The Gene Ontology (GO) project (http://www.geneontology.org/) provides a set of structured, controlled vocabularies for community use in annotating genes, gene products and sequences (also see http://www.sequenceontology.org/). The ontologies have been extended and refined for several biological areas, and improvements to the structure of the ontologies have been implemented. To improve the quantity and quality of gene product annotations available from its public repository, the GO Consortium has launched a focused effort to provide comprehensive and detailed annotation of orthologous genes across a number of ‘reference’ genomes, including human and several key model organisms. Software developments include two releases of the ontology-editing tool OBO-Edit, and improvements to the AmiGO browser interface.
Nucleic Acids Research | 2002
Selina S. Dwight; Midori A. Harris; Kara Dolinski; Catherine A. Ball; Gail Binkley; Karen R. Christie; Dianna G. Fisk; Laurie Issel-Tarver; Mark Schroeder; Gavin Sherlock; Anand Sethuraman; Shuai Weng; David Botstein; J. Michael Cherry
The Saccharomyces Genome Database (SGD) resources, ranging from genetic and physical maps to genome-wide analysis tools, reflect the scientific progress in identifying genes and their functions over the last decade. As emphasis shifts from identification of the genes to identification of the role of their gene products in the cell, SGD seeks to provide its users with annotations that will allow relationships to be made between gene products, both within Saccharomyces cerevisiae and across species. To this end, SGD is annotating genes to the Gene Ontology (GO), a structured representation of biological knowledge that can be shared across species. The GO consists of three separate ontologies describing molecular function, biological process and cellular component. The goal is to use published information to associate each characterized S.cerevisiae gene product with one or more GO terms from each of the three ontologies. To be useful, this must be done in a manner that allows accurate associations based on experimental evidence, modifications to GO when necessary, and careful documentation of the annotations through evidence codes for given citations. Reaching this goal is an ongoing process at SGD. For information on the current progress of GO annotations at SGD and other participating databases, as well as a description of each of the three ontologies, please visit the GO Consortium page at http://www.geneontology.org. SGD gene associations to GO can be found by visiting our site at http://genome-www.stanford.edu/Saccharomyces/.
Nucleic Acids Research | 2012
Valerie Wood; Midori A. Harris; Mark D. McDowall; Kim Rutherford; Brendan W. Vaughan; Daniel M. Staines; Martin Aslett; Antonia Lock; Jürg Bähler; Paul J. Kersey; Stephen G. Oliver
PomBase (www.pombase.org) is a new model organism database established to provide access to comprehensive, accurate, and up-to-date molecular data and biological information for the fission yeast Schizosaccharomyces pombe to effectively support both exploratory and hypothesis-driven research. PomBase encompasses annotation of genomic sequence and features, comprehensive manual literature curation and genome-wide data sets, and supports sophisticated user-defined queries. The implementation of PomBase integrates a Chado relational database that houses manually curated data with Ensembl software that supports sequence-based annotation and web access. PomBase will provide user-friendly tools to promote curation by experts within the fission yeast community. This will make a key contribution to shaping its content and ensuring its comprehensiveness and long-term relevance.
Current protocols in human genetics | 2003
Judith A. Blake; Midori A. Harris
Scientists wishing to utilize genomic data have quickly come to realize the benefit of standardizing descriptions of experimental procedures and results for computer‐driven information retrieval systems. The focus of the Gene Ontology project is three‐fold. First, the project goal is to compile the Gene Ontologies; structured vocabularies describing domains of molecular biology. Second, the project supports the use of these structured vocabularies in the annotation of gene products. Third, the gene product‐to‐GO annotation sets are provided by participating groups to the public through open access to the GO database and Web resource. This unit describes the current ontologies and what is beyond the scope of the Gene Ontology project. It addresses the issue of how GO vocabularies are constructed and related to genes and gene products. It concludes with a discussion of how researchers can access, browse, and utilize the GO project in the course of their own research.
Journal of Biomedical Informatics | 2011
Christopher J. Mungall; Michael Bada; Tanya Z. Berardini; Jennifer I. Deegan; Amelia Ireland; Midori A. Harris; David P. Hill; Jane Lomax
The Gene Ontology (GO) consists of nearly 30,000 classes for describing the activities and locations of gene products. Manual maintenance of ontology of this size is a considerable effort, and errors and inconsistencies inevitably arise. Reasoners can be used to assist with ontology development, automatically placing classes in a subsumption hierarchy based on their properties. However, the historic lack of computable definitions within the GO has prevented the user of these tools. In this paper, we present preliminary results of an ongoing effort to normalize the GO by explicitly stating the definitions of compositional classes in a form that can be used by reasoners. These definitions are partitioned into mutually exclusive cross-product sets, many of which reference other OBO Foundry candidate ontologies for chemical entities, proteins, biological qualities and anatomical entities. Using these logical definitions we are gradually beginning to automate many aspects of ontology development, detecting errors and filling in missing relationships. These definitions also enhance the GO by weaving it into the fabric of a wider collection of interoperating ontologies, increasing opportunities for data integration and enhancing genomic analyses.
Nucleic Acids Research | 2001
Catherine A. Ball; Heng Jin; Gavin Sherlock; Shuai Weng; John C. Matese; Rey Andrada; Gail Binkley; Kara Dolinski; Selina S. Dwight; Midori A. Harris; Laurie Issel-Tarver; Mark Schroeder; David Botstein; J. Michael Cherry
Upon the completion of the SACCHAROMYCES: cerevisiae genomic sequence in 1996 [Goffeau,A. et al. (1997) NATURE:, 387, 5], several creative and ambitious projects have been initiated to explore the functions of gene products or gene expression on a genome-wide scale. To help researchers take advantage of these projects, the SACCHAROMYCES: Genome Database (SGD) has created two new tools, Function Junction and Expression Connection. Together, the tools form a central resource for querying multiple large-scale analysis projects for data about individual genes. Function Junction provides information from diverse projects that shed light on the role a gene product plays in the cell, while Expression Connection delivers information produced by the ever-increasing number of microarray projects. WWW access to SGD is available at genome-www.stanford. edu/Saccharomyces/.
Database | 2013
Rama Balakrishnan; Midori A. Harris; Rachael P. Huntley; Kimberly Van Auken; J. Michael Cherry
The Gene Ontology Consortium (GOC) is a community-based bioinformatics project that classifies gene product function through the use of structured controlled vocabularies. A fundamental application of the Gene Ontology (GO) is in the creation of gene product annotations, evidence-based associations between GO definitions and experimental or sequence-based analysis. Currently, the GOC disseminates 126 million annotations covering >374 000 species including all the kingdoms of life. This number includes two classes of GO annotations: those created manually by experienced biocurators reviewing the literature or by examination of biological data (1.1 million annotations covering 2226 species) and those generated computationally via automated methods. As manual annotations are often used to propagate functional predictions between related proteins within and between genomes, it is critical to provide accurate consistent manual annotations. Toward this goal, we present here the conventions defined by the GOC for the creation of manual annotation. This guide represents the best practices for manual annotation as established by the GOC project over the past 12 years. We hope this guide will encourage research communities to annotate gene products of their interest to enhance the corpus of GO annotations available to all. Database URL: http://www.geneontology.org