Mirta Rubčić
University of Zagreb
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mirta Rubčić.
Bioorganic & Medicinal Chemistry | 2008
Ivica Đilović; Mirta Rubčić; Višnja Vrdoljak; Sandra Kraljević Pavelić; Marijeta Kralj; Ivo Piantanida; Marina Cindrić
The paper describes synthesis of several novel thiosemicarbazone derivatives. Furthermore, crystal and molecular structure of 4-diethylamino-salicylaldehyde 4-phenylthiosemicarbazone revealed planarity of conjugated aromatic system, which suggested the possibility of DNA binding by intercalation, especially for here studied naphthalene derivatives. However, here presented DNA binding studies excluded this mode of action. Physicochemical and structural properties of novel derivatives were compared with previously studied analogues, taken as reference compounds, revealing distinctive differences. In addition, novel thiosemicarbazone derivatives (1, 2 and 5-8) clearly display stronger antiproliferative activity on five tumor cell lines than the reference compounds 3 and 4, which supports their further investigation as potential antitumor agents.
Angewandte Chemie | 2013
Krunoslav Užarević; Ivan Halasz; Ivica Đilović; Nikola Bregović; Mirta Rubčić; Dubravka Matković-Čalogović; Vladislav Tomišić
Molecular recognition emerges from non-covalent interactions and is of paramount importance for understanding of biological processes, ranging from enzymatic activity to DNA base pairing, as well as in the design of functional supramolecular systems, for example, molecular motors, sensors, ion receptors, or systems used in waste management. In the specific area of selective anion binding, numerous anion receptors (hosts) and sensors have been developed. The study of anion binding has traditionally been performed in solution where the host often experiences conformational freedom to form complexes with a wide range of guests. However, selectivity in separation has usually been achieved only upon crystallization, emphasizing the importance of intermolecular interactions in rigid crystal environment which lock the conformation of the host giving rise to its selectivity. In this context, recent advances in chemical reactivity achieved using mechanochemistry indicate that the concepts of supramolecular chemistry, such as templating, may be applicable also to solvent-free reactions. Mechanochemical reactivity can be highly dynamic and has thus far been employed for solid-state differentiation between enantiomers, supramolecular metathesis reactions, and for thermodynamic product selection. Although these reactions show specific interaction patterns between molecules comprising their respective solid phases, the possibility of selective binding and separation of target guest molecules from solid mixtures is, besides the pioneering studies by Etter and Caira, still an unexplored area. Here we focus on recognition and separation of isomeric or geometrically similar dicarboxylic acids (Scheme 1) from either their solid or solution mixtures using principles of supramolecular chemistry. The chosen acids belong to a class of guests of high biological and industrial relevance, and a considerable effort has been put into developing their sensors and receptors. Typically, the receptor for each dicarboxylate had to be meticulously designed because of the specific geometry of each acid molecule and their differing physicochemical properties. The importance of separation of the maleic/fumaric acid (H2mal/H2fum) stereoisomeric pair is not only related to the specific diastereomer recognition, but also arises from their conflicting biochemical behavior and abundant use of H2fum in food and pharmaceutical industry. We show here that the flexible polyamine receptor L (Scheme 1) discriminates among H2mal/H2fum diastereomers, succinic acid (H2suc), and three isomers of benzenedicarboxylic acid, by adapting its conformation and finally forming different solid hydrogenbonded (HB) frameworks. Regardless of whether the recognition takes place in the solid state by milling or by crystallization from solution, the resulting supramolecular complexes are the same and the selectivity bias of L towards the guest acids is fully retained. Milling improved yields to quantitative and almost eliminated the use of solvent. L proved to be an exceptional receptor for H2mal, also on the gram scale, excluding it from solid mixtures with even five other acids or from mixtures where there is a large surplus of a competing acid. Reacting L and H2mal in methanol (MeOH) or ethanol (EtOH) solutions yielded isoskeletal solvated solids, 1a (Table 1 and Section S.2 in the Supporting Information), Scheme 1. Dicarboxylic acids and the polyamine host L. The host binds anions as a cation (HL) resulting from protonation of the central amino group.
Chemistry: A European Journal | 2012
Mirta Rubčić; Krunoslav Užarević; Ivan Halasz; Nikola Bregović; Momir Mališ; Ivica Đilović; Zoran Kokan; Robin S. Stein; Robert E. Dinnebier; Vladislav Tomišić
The Schiff base derived from salicylaldehyde and 2-amino-3-hydroxypyridine affords a diversity of solid forms, two polymorphic pairs of the enol-imino (D1 a and D1 b) and keto-amino (D2 a and D2 b) desmotropes. The isolated phases, identified by IR spectroscopy, X-ray crystallography, and (13)C cross-polarization/magnetic angle spinning (CP/MAS) NMR spectroscopy, display essentially planar molecular conformations characterized by strong intramolecular hydrogen bonds of the O-H⋅⋅⋅N (D1) or N-H⋅⋅⋅O (D2) type. A change in the position of the proton within this O⋅⋅⋅H⋅⋅⋅N system is accompanied by substantially different molecular conformations and, subsequently, by divergent supramolecular architectures. The appearance and interconversion conditions for each of the four phases have been established on the basis of a number of solution and solvent-free experiments, and evaluated against the results of computational studies. Solid phases readily convert into the most stable form (D1 a) upon exposure to methanol vapor, heating, or by mechanical treatment, and these transformations are accompanied by a change in the color of the sample. The course of thermally induced transformations has been monitored in detail by means of temperature-resolved powder X-ray diffraction and infrared spectroscopy. Upon dissolution, all forms equilibrate immediately, as confirmed by NMR and UV/Vis spectroscopy in several solvents, with the equilibrium shifted far towards the enol tautomer. This study reveals the significance of peripheral groups in the stabilization of metastable tautomers in the solid state.
Chemistry: A European Journal | 2014
Marina Juribašić; Nikola Bregović; Vladimir Stilinović; Vladislav Tomišić; Marina Cindrić; Primož Šket; Janez Plavec; Mirta Rubčić; Krunoslav Užarević
This work presents a successful application of a recently reported supramolecular strategy for stabilization of metastable tautomers in cocrystals to monocomponent, non-heterocyclic, tautomeric solids. Quantum-chemical computations and solution studies show that the investigated Schiff base molecule, derived from 3-methoxysalicylaldehyde and 2-amino-3-hydroxypyridine (ap), is far more stable as the enol tautomer. In the solid state, however, in all three obtained polymorphic forms it exists solely as the keto tautomer, in each case stabilized by an unexpected hydrogen-bonding pattern. Computations have shown that hydrogen bonding of the investigated Schiff base with suitable molecules shifts the tautomeric equilibrium to the less stable keto form. The extremes to which supramolecular stabilization can lead are demonstrated by the two polymorphs of molecular complexes of the Schiff base with ap. The molecules of both constituents of molecular complexes are present as metastable tautomers (keto anion and protonated pyridine, respectively), which stabilize each other through a very strong hydrogen bond. All the obtained solid forms proved stable in various solid-state and solvent-mediated methods used to establish their relative thermodynamic stabilities and possible interconversion conditions.
CrystEngComm | 2011
Krunoslav Užarević; Mirta Rubčić; Maja Radić; Andreas Puškarić; Marina Cindrić
This article describes the selective cleavage of coordination bonds by mechanochemical methods and the further application of the thus obtained precursors for a facile preparation of new coordination compounds. In the class of dioxomolybdenum(VI) coordination compounds, [MoO2L(ROH)], where L stands for a tridentate dianionic ONO ligand and ROH represents different alcohol molecules, mechanical treatment induces an exclusive cleavage of the molybdenum–alcohol bond, which can thus be considered as a mechanosensitive bond. Alcohol removal can also be accomplished by heating. Both grinding and heating resulted in highly reactive, coordinatively unsaturated compounds, an orange amorphous pentacoordinated [MoO2L] (I) and the brown polymeric [MoO2L]n ((I)nnn), respectively. Even though both I and (I)nn are stable at room temperature, they can be interconverted using only solvent-free techniques, a conversion followed by a colour change of the sample. The tendency of such unsaturated complexes to complete their coordination spheres was exploited for the efficient solution and solvent-free syntheses of octahedral molybdenum complexes with selected O- and N-donating ligands. Both approaches herein used, solution and solvent-free, have proved to be superior under specific conditions and their respective advantages and weaknesses are discussed.
Dalton Transactions | 2009
Mirta Rubčić; Dalibor Milić; Gordan Horvat; Ivica Đilović; Nives Galić; Vladislav Tomišić; Marina Cindrić
Reactions of the salicylaldehyde 4-phenylthiosemicarbazone (H(2)L) with selected vanadium(iv) and vanadium(v) precursors ([VO(acac)(2)], [VO(OAc)(2)], VOSO(4), [V(2)O(4)(acac)(2)]) were investigated under aerobic conditions in different alcohols (methanol, ethanol, propanol). In all examined cases mononuclear alkoxo vanadium(v) complexes [VOL(OR)] (1) (OR = OMe, OEt, OPr) were isolated as major products. On prolonged standing, mother liquids afforded dinuclear vanadium(v) complexes [V(2)O(3)(L(cycl))(2)(OR)(2)] (3) (OR = OMe, OEt, OPr), where L(cycl)(-) represents 1,3,4-thiadiazole ligand, formed by vanadium-induced oxidative cyclization of H(2)L. When [VO(acac)(2)] or [V(2)O(4)(acac)(2)] were used as precursors, in addition to products 1 and 3, a thiazoline derivative HL(acac)(cycl) (2) was isolated. This compound, formed by a reaction between acetylacetone and H(2)L, represented the second type of cyclic product. The products were characterized by IR and NMR spectroscopies, TG analysis, and in some cases by single-crystal X-ray diffraction. To the best of our knowledge, compounds [V(2)O(3)(L(cycl))(2)(OR)(2)] represent the first structurally characterized dinuclear vanadium(v) complexes with a thiadiazole moiety acting as a bridging ligand. Complexes 1 and 3, when dissolved in an appropriate alcohol, underwent substitution of the alkoxo ligand as confirmed by XRPD. The kinetics of reactions in methanolic solutions was qualitatively studied by UV-Vis and ESMS spectrometries. Under the experimental conditions applied, a relatively slow formation of the mononuclear complex [VOL(OMe)] and an even slower formation of the cyclic species 2 were observed, whereas the presence of dinuclear compound [V(2)O(3)(L(cycl))(2)(OMe)(2)] in the reaction mixture could not be detected.
New Journal of Chemistry | 2011
Ivan Halasz; Mirta Rubčić; Krunoslav Užarević; Ivica Đilović; Ernest Meštrović
The cocrystal of 4-oxopimelic acid and 4,4′-bipyridine was isolated in two polymorphic forms depending upon the solvent of crystallisation. Polymorphs exhibit hydrogen-bonded chains formed between the carboxyl and pyridine moieties while different packing arrangements of chains result from C–H⋯O interactions. Solid-state synthesis and interconversion conditions were investigated by grinding and thermal methods.
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2004
Višnja Oreščanin; Luka Mikelić; Stipe Lulić; Karlo Nad; Nenad Mikulic; Mirta Rubčić; Gordana Pavlović
Abstract A new procedure for electroplating wastewater treatment using waste by-product (ferrous-sulfate) and waste (wood fly ash) is presented. Ferrous-sulfate was employed for Cr(VI) reduction whereas neutralization and heavy metal removal from electroplating wastewaters was performed using wood fly ash. Heavy metal removal efficiency varied from 97.5% for Cu to 99.973% for Zn. Satisfying results can be achieved already at the pH 8. The method is suitable for the purposes of wastewater treatment and disposal in compliance with environmental laws. Furthermore, it is technically simple, cost-efficient and requires less space compared to the classical methodology. According to the composition of its water extractable fraction remaining waste ash could be safely deposited on domestic waste repositories.
Acta Crystallographica Section C-crystal Structure Communications | 2008
Mirta Rubčić; Ivica Dilovic; Marina Cindrić; Dubravka Matković-Čalogović
The molecular structures of two salicylaldehyde thiosemicarbazone derivatives, namely salicylaldehyde 4-phenylthiosemicarbazone, C(14)H(13)N(3)OS, (I), and 4-methoxysalicylaldehyde 4-phenylthiosemicarbazone, C(15)H(15)N(3)O(2)S, (II), both of potential pharmacological interest, are found in the keto (thione) tautomeric form. The first compound represents a second triclinic polymorph of composition beta-C(14)H(13)N(3)OS. Although both polymorphs crystallize in the same space group (P1), the alpha-polymorph [Seena, Kurup & Suresh (2008). J. Chem. Crystallogr. 38, 93-96] differs from the beta form in its unit-cell volume at 293 K. The molecules in the crystal structures of (I) and (II) are linked into centrosymmetric R(2)(2)(8) dimers by hydrogen bonds of the N-H...S=C type. These dimers are connected through pi-pi stacking and T-shaped C-H...pi interactions into three-dimensional networks.
RSC Advances | 2015
Višnja Vrdoljak; Gordana Pavlović; Tomica Hrenar; Mirta Rubčić; Patrizia Siega; Renata Dreos; A Marina Cindric
Cobalt(III) complexes of the type [Co(HL)(L)] were synthesized under solvothermal conditions staring from [Co(C5H7O2)3] and the corresponding ligand H2L (salicylaldehyde 4-hydroxybenzhydrazone, 3-methoxysalicylaldehyde 4-hydroxybenzhydrazone, 4-methoxysalicylaldehyde 4-hydroxybenzhydrazone, salicylaldehyde benzhydrazone, 3-methoxysalicylaldehyde benzhydrazone, 4-methoxysalicylaldehyde benzhydrazone). The presence of differently protonated forms of the same ligand in the complexes was supported by IR and NMR spectroscopy as well as by the single crystal X-ray diffraction method. The effects of weak interactions on the supramolecular architecture and their role on the ligand form stabilization have been analysed. Molecular interactions within the unit cells were investigated and quantified by extensive quantum chemical analysis on models built from crystal structures using density functional theory and empirical dispersion. Ligands used in this study were prepared under environmentally friendly conditions by mechanochemical synthesis. Their thermal behaviour and phase transitions were investigated using TG and DSC analysis and the powder X-ray diffraction method.