Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohamed T. Ghoneim is active.

Publication


Featured researches published by Mohamed T. Ghoneim.


ACS Nano | 2014

Transformational Silicon Electronics

Jhonathan P. Rojas; Galo A. Torres Sevilla; Mohamed T. Ghoneim; Salman Bin Inayat; Sally M. Ahmed; Aftab M. Hussain; Muhammad Mustafa Hussain

In todays traditional electronics such as in computers or in mobile phones, billions of high-performance, ultra-low-power devices are neatly integrated in extremely compact areas on rigid and brittle but low-cost bulk monocrystalline silicon (100) wafers. Ninety percent of global electronics are made up of silicon. Therefore, we have developed a generic low-cost regenerative batch fabrication process to transform such wafers full of devices into thin (5 μm), mechanically flexible, optically semitransparent silicon fabric with devices, then recycling the remaining wafer to generate multiple silicon fabric with chips and devices, ensuring low-cost and optimal utilization of the whole substrate. We show monocrystalline, amorphous, and polycrystalline silicon and silicon dioxide fabric, all from low-cost bulk silicon (100) wafers with the semiconductor industrys most advanced high-κ/metal gate stack based high-performance, ultra-low-power capacitors, field effect transistors, energy harvesters, and storage to emphasize the effectiveness and versatility of this process to transform traditional electronics into flexible and semitransparent ones for multipurpose applications.


ACS Nano | 2014

Flexible nanoscale high-performance FinFETs.

Galo A. Torres Sevilla; Mohamed T. Ghoneim; Hossain M. Fahad; Jhonathan P. Rojas; Aftab M. Hussain; Muhammad Mustafa Hussain

With the emergence of the Internet of Things (IoT), flexible high-performance nanoscale electronics are more desired. At the moment, FinFET is the most advanced transistor architecture used in the state-of-the-art microprocessors. Therefore, we show a soft-etch based substrate thinning process to transform silicon-on-insulator (SOI) based nanoscale FinFET into flexible FinFET and then conduct comprehensive electrical characterization under various bending conditions to understand its electrical performance. Our study shows that back-etch based substrate thinning process is gentler than traditional abrasive back-grinding process; it can attain ultraflexibility and the electrical characteristics of the flexible nanoscale FinFET show no performance degradation compared to its rigid bulk counterpart indicating its readiness to be used for flexible high-performance electronics.


IEEE Transactions on Electron Devices | 2013

Flexible High-

Jhonathan P. Rojas; Mohamed T. Ghoneim; Chadwin D. Young; Muhammad Mustafa Hussain

Implementation of memory on bendable substrates is an important step toward a complete and fully developed notion of mechanically flexible computational systems. In this paper, we have demonstrated a simple fabrication flow to build metal-insulator-metal capacitors, key components of dynamic random access memory, on a mechanically flexible silicon (100) fabric. We rely on standard microfabrication processes to release a thin sheet of bendable silicon (area: 18 cm2 and thickness: 25 μm) in an inexpensive and reliable way. On such platform, we fabricated and characterized the devices showing mechanical robustness (minimum bending radius of 10 mm at an applied strain of 83.33% and nominal strain of 0.125%) and consistent electrical behavior regardless of the applied mechanical stress. Furthermore, and for the first time, we performed a reliability study suggesting no significant difference in performance and showing an improvement in lifetime projections.


Electronics | 2015

\kappa

Mohamed T. Ghoneim; Muhammad Mustafa Hussain

Solid-state memory is an essential component of the digital age. With advancements in healthcare technology and the Internet of Things (IoT), the demand for ultra-dense, ultra-low-power memory is increasing. In this review, we present a comprehensive perspective on the most notable approaches to the fabrication of physically flexible memory devices. With the future goal of replacing traditional mechanical hard disks with solid-state storage devices, a fully flexible electronic system will need two basic devices: transistors and nonvolatile memory. Transistors are used for logic operations and gating memory arrays, while nonvolatile memory (NVM) devices are required for storing information in the main memory and cache storage. Since the highest density of transistors and storage structures is manifested in memories, the focus of this review is flexible NVM. Flexible NVM components are discussed in terms of their functionality, performance metrics, and reliability aspects, all of which are critical components for NVM technology to be part of mainstream consumer electronics, IoT, and advanced healthcare devices. Finally, flexible NVMs are benchmarked and future prospects are provided.


Applied Physics Letters | 2015

/Metal Gate Metal/Insulator/Metal Capacitors on Silicon (100) Fabric

Mohamed T. Ghoneim; Muhammad Mustafa Hussain

Flexible memory can enable industrial, automobile, space, and smart grid centered harsh/extreme environment focused electronics application(s) for enhanced operation, safety, and monitoring where bent or complex shaped infrastructures are common and state-of-the-art rigid electronics cannot be deployed. Therefore, we report on the physical-mechanical-electrical characteristics of a flexible ferroelectric memory based on lead zirconium titanate as a key memory material and flexible version of bulk mono-crystalline silicon (100). The experimented devices show a bending radius down to 1.25 cm corresponding to 0.16% nominal strain (high pressure of ∼260 MPa), and full functionality up to 225 °C high temperature in ambient gas composition (21% oxygen and 55% relative humidity). The devices showed unaltered data retention and fatigue properties under harsh conditions, still the reduced memory window (20% difference between switching and non-switching currents at 225 °C) requires sensitive sense circuitry for proper functionality and is the limiting factor preventing operation at higher temperatures.


Applied Physics Letters | 2014

Review on Physically Flexible Nonvolatile Memory for Internet of Everything Electronics

Mohamed T. Ghoneim; Arwa T. Kutbee; F. Ghodsi Nasseri; G. Bersuker; Muhammad Mustafa Hussain

We report the impact of mechanical anomaly on high-κ/metal-oxide-semiconductor capacitors built on flexible silicon (100) fabric. The mechanical tests include studying the effect of bending radius up to 5 mm minimum bending radius with respect to breakdown voltage and leakage current of the devices. We also report the effect of continuous mechanical stress on the breakdown voltage over extended periods of times.


Microelectronics Journal | 2014

Study of harsh environment operation of flexible ferroelectric memory integrated with PZT and silicon fabric

Mohamed T. Ghoneim; Mohammed Affan Zidan; Khaled N. Salama; Muhammad Mustafa Hussain

The advantages associated with neuromorphic computation are rich areas of complex research. We address the fabrication challenge of building neuromorphic devices on structurally foldable platform with high integration density. We present a CMOS compatible fabrication process to demonstrate for the first time memristive devices fabricated on bulk monocrystalline silicon (100) which is next transformed into a flexible thin sheet of silicon fabric with all the pre-fabricated devices. This process preserves the ultra-high integration density advantage unachievable on other flexible substrates. In addition, the memristive devices are of the size of a motor neuron and the flexible/folded architectural form factor is critical to match brain cortexs folded pattern for ultra-compact design.


Applied Physics Letters | 2013

Mechanical anomaly impact on metal-oxide-semiconductor capacitors on flexible silicon fabric

Mohamed T. Ghoneim; Casey Smith; Muhammad Mustafa Hussain

Chemical vapor deposition based graphene grown on copper foil is attractive for electronic applications owing to its reliable growth process, large area coverage, and relatively defect free nature. However, transfer of the synthesized graphene to host substrate for subsequent device fabrication is extremely sensitive and can impact ultimate performance. Although ultra-high mobility is graphenes most prominent feature, problems with high contact resistance have severely limited its true potential. Therefore, we report a simple poly-(methyl methacrylate) based transfer process without post-annealing to achieve specific contact resistivity of 3.8 × 10−5 Ω cm2 which shows 80% reduction compared to previously reported values.


ACS Nano | 2015

Towards neuromorphic electronics

Jhonathan P. Rojas; Galo A. Torres Sevilla; Nasir Alfaraj; Mohamed T. Ghoneim; Arwa T. Kutbee; Ashvitha Sridharan; Muhammad Mustafa Hussain

The ability to incorporate rigid but high-performance nanoscale nonplanar complementary metal-oxide semiconductor (CMOS) electronics with curvilinear, irregular, or asymmetric shapes and surfaces is an arduous but timely challenge in enabling the production of wearable electronics with an in situ information-processing ability in the digital world. Therefore, we are demonstrating a soft-material enabled double-transfer-based process to integrate flexible, silicon-based, nanoscale, nonplanar, fin-shaped field effect transistors (FinFETs) and planar metal-oxide-semiconductor field effect transistors (MOSFETs) on various asymmetric surfaces to study their compatibility and enhanced applicability in various emerging fields. FinFET devices feature sub-20 nm dimensions and state-of-the-art, high-κ/metal gate stacks, showing no performance alteration after the transfer process. A further analysis of the transferred MOSFET devices, featuring 1 μm gate length, exhibits an ION value of nearly 70 μA/μm (VDS = 2 V, VGS = 2 V) and a low subthreshold swing of around 90 mV/dec, proving that a soft interfacial material can act both as a strong adhesion/interposing layer between devices and final substrate as well as a means to reduce strain, which ultimately helps maintain the devices performance with insignificant deterioration even at a high bending state.


IEEE Transactions on Reliability | 2015

Simplistic graphene transfer process and its impact on contact resistance

Mohamed T. Ghoneim; Jhonathan P. Rojas; Chadwin D. Young; Gennadi Bersuker; Muhammad Mustafa Hussain

We report on the electrical study of high dielectric constant insulator and metal gate metal oxide semiconductor capacitors (MOSCAPs) on a flexible ultra-thin (25 μm) silicon fabric which is peeled off using a CMOS compatible process from a standard bulk mono-crystalline silicon substrate. A lifetime projection is extracted using statistical analysis of the ramping voltage (Vramp) breakdown and time dependent dielectric breakdown data. The obtained flexible MOSCAPs operational voltages satisfying the 10 years lifetime benchmark are compared to those of the control MOSCAPs, which are not peeled off from the silicon wafer.

Collaboration


Dive into the Mohamed T. Ghoneim's collaboration.

Top Co-Authors

Avatar

Muhammad Mustafa Hussain

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Aftab M. Hussain

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Galo A. Torres Sevilla

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Arwa T. Kutbee

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jhonathan P. Rojas

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Amir N. Hanna

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Rabab R. Bahabry

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Nasir Alfaraj

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Sohail F. Shaikh

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge