Morten Fischer Rasmussen
Technical University of Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Morten Fischer Rasmussen.
IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2015
Thomas Lehrmann Christiansen; Morten Fischer Rasmussen; Jan Peter Bagge; Lars Nordahl Moesner; Jørgen Arendt Jensen; Erik Vilain Thomsen
This paper demonstrates the fabrication, characterization, and experimental imaging results of a 62+62 element λ/2-pitch row-column-addressed capacitive micromachined ultrasonic transducer (CMUT) array with integrated apodization. A new fabrication process was used to manufacture a 26.3 mm by 26.3 mm array using five lithography steps. The array includes an integrated apodization, presented in detail in Part I of this paper, which is designed to reduce the amplitude of the ghost echoes that are otherwise prominent for row-column-addressed arrays. Custom front-end electronics were produced with the capability of transmitting and receiving on all elements, and the option of disabling the integrated apodization. The center frequency and -6-dB fractional bandwidth of the array elements were 2.77 ± 0.26 MHz and 102 ± 10%, respectively. The surface transmit pressure at 2.5 MHz was 590 ± 73 kPa, and the sensitivity was 0.299 ± 0.090 V/Pa. The nearest neighbor crosstalk level was -23.9 ± 3.7 dB, while the transmit-to-receive-elements crosstalk level was -40.2 ± 3.5 dB. Imaging of a 0.3-mm-diameter steel wire using synthetic transmit focusing with 62 single-element emissions demonstrated axial and lateral FWHMs of 0.71 mm and 1.79 mm (f-number: 1.4), respectively, compared with simulated axial and lateral FWHMs of 0.69 mm and 1.76 mm. The dominant ghost echo was reduced by 15.8 dB in measurements using the integrated apodization compared with the disabled configuration. The effect was reproduced in simulations, showing a ghost echo reduction of 18.9 dB.
IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2014
Michael Johannes Pihl; Matthias Bo Stuart; Borislav Gueorguiev Tomov; Morten Fischer Rasmussen; Jørgen Arendt Jensen
The 3-D transverse oscillation method is investigated by estimating 3-D velocities in an experimental flow-rig system. Measurements of the synthesized transverse oscillating fields are presented as well. The method employs a 2-D transducer; decouples the velocity estimation; and estimates the axial, transverse, and elevation velocity components simultaneously. Data are acquired using a research ultrasound scanner. The velocity measurements are conducted with steady flow in sixteen different directions. For a specific flow direction with [α, β] = [45, 15]°, the mean estimated velocity vector at the center of the vessel is (v<sub>x</sub>, v<sub>y</sub>, v<sub>z</sub>) = (33.8, 34.5, 15.2) ± (4.6, 5.0, 0.6) cm/s where the expected velocity is (34.2, 34.2, 13.0) cm/s. The velocity magnitude is 50.6 ± 5.2 cm/s with a bias of 0.7 cm/s. The flow angles α and β are estimated as 45.6 ± 4.9° and 17.6 ± 1.0°. Subsequently, the precision and accuracy are calculated over the entire velocity profiles. On average for all direction, the relative mean bias of the velocity magnitude is -0.08%. For α and β, the mean bias is -0.2° and -1.5°. The relative standard deviations of the velocity magnitude ranges from 8 to 16%. For the flow angles, the ranges of the mean angular deviations are 5° to 16° and 0.7° and 8°.
IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2014
Morten Fischer Rasmussen; Jørgen Arendt Jensen
This paper demonstrates that synthetic aperture imaging (SAI) can be used to achieve real-time 3-D ultrasound phased-array imaging. It investigates whether SAI increases the image quality compared with the parallel beamforming (PB) technique for real-time 3-D imaging. Data are obtained using both simulations and measurements with an ultrasound research scanner and a commercially available 3.5- MHz 1024-element 2-D transducer array. To limit the probe cable thickness, 256 active elements are used in transmit and receive for both techniques. The two imaging techniques were designed for cardiac imaging, which requires sequences designed for imaging down to 15 cm of depth and a frame rate of at least 20 Hz. The imaging quality of the two techniques is investigated through simulations as a function of depth and angle. SAI improved the full-width at half-maximum (FWHM) at low steering angles by 35%, and the 20-dB cystic resolution by up to 62%. The FWHM of the measured line spread function (LSF) at 80 mm depth showed a difference of 20% in favor of SAI. SAI reduced the cyst radius at 60 mm depth by 39% in measurements. SAI improved the contrast-to-noise ratio measured on anechoic cysts embedded in a tissue-mimicking material by 29% at 70 mm depth. The estimated penetration depth on the same tissue-mimicking phantom shows that SAI increased the penetration by 24% compared with PB. Neither SAI nor PB achieved the design goal of 15 cm penetration depth. This is likely due to the limited transducer surface area and a low SNR of the experimental scanner used.
Proceedings of SPIE | 2013
Morten Fischer Rasmussen; Jørgen Arendt Jensen
This paper compares the imaging performance of a 128+128 element row-column addressed array with a fully addressed 16×16 2D array. The comparison is made via simulations of the point spread function with Field II. Both arrays have lambda-pitch, a center frequency of 3:5MHz and use 256 active elements. The row-column addressed array uses 128 transmit channels and 128 receive channels, whereas the fully addressed array uses 256 channels in both transmit and receive. The large size of the emulated row and column elements in the row-column addressed array causes ghost echoes to appear. The ghost echoes are shown to be suppressed when the sub-elements within each of the emulated row and column elements are apodized. The maximum ghost intensity is suppressed by 22:2 dB compared to using no apodization. With apodization applied, the full-width-at-half-maximum in the lateral direction for the fully addressed array is 2:81mm, and 1:01mm for the row-column addressed array. This shows that the detail resolution can be more than doubled using the row-column addressed array instead of the fully addressed array. The row column addressed array achieves a R20 dB cystic resolution of 0:76mm, compared to 3:16mm for the fully addressed array. The significantly smaller R20 dB-value for the row-column addressed array indicates that it can achieve a much higher contrast resolution than the fully addressed array.
IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2016
Jørgen Arendt Jensen; Morten Fischer Rasmussen; Michael Johannes Pihl; Simon Holbek; Carlos Armando Villagómez Hoyos; David Bradway; Matthias Bo Stuart; Borislav Gueorguiev Tomov
A method for rapid measurement of intensities (Ispta), mechanical index (MI), and probe surface temperature for any ultrasound scanning sequence is presented. It uses the scanners sampling capability to give an accurate measurement of the whole imaging sequence for all emissions to yield the true distributions. The method is several orders of magnitude faster than approaches using an oscilloscope, and it also facilitates validating the emitted pressure field and the scanners emission sequence software. It has been implemented using the experimental synthetic aperture real-time ultrasound system (SARUS) scanner and the Onda AIMS III intensity measurement system (Onda Corporation, Sunnyvale, CA, USA). Four different sequences have been measured: a fixed focus emission, a duplex sequence containing B-mode and flow emissions, a vector flow sequence with B-mode and flow emissions in 17 directions, and finally a SA duplex flow sequence. A BK8820e (BK Medical, Herlev, Denmark) convex array probe is used for the first three sequences and a BK8670 linear array probe for the SA sequence. The method is shown to give the same intensity values within 0.24% of the AIMS III Soniq 5.0 (Onda Corporation, Sunnyvale, CA, USA) commercial intensity measurement program. The approach can measure and store data for a full imaging sequence in 3.8-8.2 s per spatial position. Based on Ispta, MI, and probe surface temperature, the method gives the ability to determine whether a sequence is within U.S. FDA limits, or alternatively indicate how to scale it to be within limits.
internaltional ultrasonics symposium | 2014
Thomas Lehrmann Christiansen; Morten Fischer Rasmussen; Jørgen Arendt Jensen; Erik Vilain Thomsen
Experimental results from row-column addressed capacitive micromachined ultrasonic transducers (CMUTs) with integrated apodization are presented. The apodization is applied by varying the density of CMUT cells in the array with the objective of damping the edge waves originating from the element ends. Two row-column addressed 32+32 CMUT arrays are produced using a wafer-bonding technique, one with and one without integrated apodization. Hydrophone measurements of the emitted pressure field from the array with integrated apodization show a reduction in edge wave energy of 8.4 dB (85 %) compared to the array without integrated apodization. Field II simulations yield a corresponding reduction of 13.0 dB (95 %). The simulations are able to replicate the measured pressure field, proving the predictability of the technique.
Proceedings of SPIE | 2014
Jørgen Arendt Jensen; Morten Fischer Rasmussen; Matthias Bo Stuart; Borislav Gueorguiev Tomov
FDA requires that intensity and safety parameters are measured for all imaging schemes for clinical imaging. This is often cumbersome, since the scan sequence has to broken apart, measurements conducted for the individually emitted beams, and the final intensity levels calculated by combining the intensities from the individual beams. This paper suggests a fast measurement scheme using the multi-line sampling capability of modern scanners and research systems. The hydrophone is connected to one sampling channel in the research system, and the intensity is measured for all imaging lines in one emission sequence. This makes it possible to map out the pressure field and hence intensity level for all imaging lines in a single measurement. The approach has several advantages: the scanner does not have to be re-programmed and can use the scan sequence without modification. The measurements are orders of magnitude faster (minutes rather than hours) and the final intensity level calculation can be made generic and reused for any kind of scan sequence by just knowing the number of imaging lines and the pulse repetition time. The scheme has been implemented on the Acoustic Intensity Measurement System AIMS III (Onda, Sunnyvale, California, USA). The research scanner SARUS is used for the experiments, where one of the channels is used for the hydrophone signal. A 3 MHz BK 8820e (BK Medical, Herlev, Denmark) convex array with 192 elements is used along with an Onda HFL-0400 hydrophone connected to a AH-2010 pre-amplifier (Onda Corporation, Sunnyvale, USA). A single emission sequence is employed for testing and calibrating the approach. The measurements using the AIMS III and SARUS systems after calibration agree within a relative standard deviation of 0.24%. A duplex B-mode and flow sequence is also investigated. The complex intensity map is measured and the time averaged spatial peak intensity is found. A single point measurement takes 3.43 seconds and the whole sequence can be characterized on the acoustical axis in around 6 minutes.
internaltional ultrasonics symposium | 2015
Simon Holbek; Thomas Lehrmann Christiansen; Morten Fischer Rasmussen; Matthias Bo Stuart; Erik Vilain Thomasen; Jørgen Arendt Jensen
The concept of 2-D row-column (RC) addressed arrays for 3-D imaging have shown to be an interesting alternative to 2-D matrix array, due to the reduced channel count. However, the properties for RC arrays to estimate blood velocities have never been reported, which is of great importance for a clinical implementation of this type of array. The aim of this study is, thus, to develop a technique for estimating 3-D vector flow with a RC array using the transverse oscillation (TO) method. The properties are explored both in a simulation study and with a prototype probe for experimental use. In both setups, a 124 channel 2-D RC array with integrated apodization, pitch = 270 μm and a center frequency of 3.0 MHz was used. The performance of the estimator was tested on a simulated vessel (Ø = 12 mm) with a parabolic flow profile and a peak velocity of 1 m/s. Measurements were made in a flowrig (Ø = 12 mm) containing a laminar parabolic flow and a peak velocity of 0.54 m/s. Data was sampled and stored on the experimental ultrasound scanner SARUS. Simulations yields relative mean biases at (-1.1%, -1.5%, -1.0%) with mean standard deviations of σ̃ were (8.5%, 9.0%, 1.4%) % for (vx; vy; vz) from a 3-D velocity vector in a 15° rotated vessel with a 75° beam-to-flow angle. In the experimental setup with a 90° beam-to-flow angle, the relative mean biases were (-2.6%, -1.3%, 1.4%) with a relative standard deviation of (5.0%, 5.2%, 1.0%) for the respective transverse, lateral and axial velocity component.
Proceedings of SPIE | 2013
Michael Johannes Pihl; Matthias Bo Stuart; Borislav Gueorguiev Tomov; Jens Hansen; Morten Fischer Rasmussen; Jørgen Arendt Jensen
This paper presents 3D vector flow images obtained using the 3D Transverse Oscillation (TO) method. The method employs a 2D transducer and estimates the three velocity components simultaneously, which is important for visualizing complex flow patterns. Data are acquired using the experimental ultrasound scanner SARUS on a flow-rig system with steady flow. The vessel of the flow-rig is centered at a depth of 30 mm, and the flow has an expected 2D circular-symmetric parabolic profile with a peak velocity of 1 m/s. Ten frames of 3D vector flow images are acquired in a cross-sectional plane orthogonal to the center axis of the vessel, which coincides with the y-axis and the flow direction. Hence, only out-of-plane motion is expected. This motion cannot be measured by typical commercial scanners employing 1D arrays. Each frame consists of 16 flow lines steered from -15 to 15 degrees in steps of 2 degrees in the ZX-plane. For the center line, 3200 M-mode lines are acquired yielding 100 velocity profiles. At the center of the vessel, the mean and standard deviation of the estimated velocity vectors are (vx, vy, vz) = (-0.026, 95, 1.0)±(8.8, 6.2, 0.84) cm/s compared to the expected (0.0, 96, 0.0) cm/s. Relative to the velocity magnitude this yields standard deviations of (9.1, 6.4, 0.88) %, respectively. Volumetric flow rates were estimated for all ten frames yielding 57.9±2.0 mL/s in comparison with 56.2 mL/s measured by a commercial magnetic flow meter. One frame of the obtained 3D vector flow data is presented and visualized using three alternative approaches. Practically no in-plane motion (vx and vz) is measured, whereas the out-of-plane motion (vy) and the velocity magnitude exhibit the expected 2D circular-symmetric parabolic shape. It shown that the ultrasound method is suitable for real-time data acquisition as opposed to magnetic resonance imaging (MRI). The results demonstrate that the 3D TO method is capable of performing 3D vector flow imaging.
internaltional ultrasonics symposium | 2012
Morten Fischer Rasmussen; G. Ferin; Rémi Dufait; Jørgen Arendt Jensen
In this paper, initial 3D ultrasound measurements from a 1024 channel system are presented. Measurements of 3D Synthetic aperture imaging (SAI) and Explososcan are presented and compared. Explososcan is the ‘gold standard’ for real-time 3D medical ultrasound imaging. SAI is compared to Explososcan by using tissue and wire phantom measurements. The measurements are carried out using a 1024 element 2D transducer and the 1024 channel experimental ultrasound scanner SARUS. To make a fair comparison, the two imaging techniques use the same number of active channels, the same number of emissions per frame, and they emit the same amount of energy per frame. The measurements were performed with parameters similar to standard cardiac imaging, with 256 emissions to image a volume spanning 90°×90° and 150mm in depth. This results in a frame rate of 20 Hz. The number of active channels is set to 316 from the design of Explososcan. From wire phantom measurements the point spread functions of both techniques were measured. At 40mm depth Explososcan achieves a main lobe width (FWHM) of 2.5mm while SAIs FWHM is 2.2 mm. At 80mm the FWHM is 5.2mm for Explososcan and 3.4mm for SAI, which is a difference of 35 %. Another metric used on the PSF is the cystic resolution, which expresses the ability to detect anechoic cysts in a uniform scattering media. SAI improved the cystic resolution, R20dB, at 40mm depth from 4.5mm to 1.7 mm, compared to Explososcan. The speckle pattern looked better for SAI compared to Explososcans spatial shift variant speckle pattern.