Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Motoshi Kamiya is active.

Publication


Featured researches published by Motoshi Kamiya.


Journal of the American Chemical Society | 2013

Facile Catch and Release of Fullerenes Using a Photoresponsive Molecular Tube

Norifumi Kishi; Munetaka Akita; Motoshi Kamiya; Shigehiko Hayashi; Hsiu-Fu Hsu; Michito Yoshizawa

A novel M2L2 molecular tube capable of binding fullerene C60 was synthesized from bispyridine ligands with embedded anthracene panels and Ag(I) hinges. Unlike previous molecular cages and capsules, this open-ended tubular host can accommodate a single molecule of various C60 derivatives with large substituents. The fullerene guest can then be released by using the ideal, noninvasive external stimulus, light.


Journal of the American Chemical Society | 2012

Molecular mechanism of ATP hydrolysis in F1-ATPase revealed by molecular simulations and single-molecule observations.

Shigehiko Hayashi; Hiroshi Ueno; Abdul Rajjak Shaikh; Myco Umemura; Motoshi Kamiya; Yuko Ito; Mitsunori Ikeguchi; Yoshihito Komoriya; Ryota Iino; Hiroyuki Noji

Enzymatic hydrolysis of nucleotide triphosphate (NTP) plays a pivotal role in protein functions. In spite of its biological significance, however, the chemistry of the hydrolysis catalysis remains obscure because of the complex nature of the reaction. Here we report a study of the molecular mechanism of hydrolysis of adenosine triphosphate (ATP) in F(1)-ATPase, an ATP-driven rotary motor protein. Molecular simulations predicted and single-molecule observation experiments verified that the rate-determining step (RDS) is proton transfer (PT) from the lytic water molecule, which is strongly activated by a metaphosphate generated by a preceding P(γ)-O(β) bond dissociation (POD). Catalysis of the POD that triggers the chain activation of the PT is fulfilled by hydrogen bonds between Walker motif A and an arginine finger, which commonly exist in many NTPases. The reaction mechanism unveiled here indicates that the protein can regulate the enzymatic activity for the function in both the POD and PT steps despite the fact that the RDS is the PT step.


Journal of Biological Chemistry | 2013

A Blue-shifted Light-driven Proton Pump for Neural Silencing

Yuki Sudo; Ayako Okazaki; Hikaru Ono; Jin Yagasaki; Seiya Sugo; Motoshi Kamiya; Louisa Reissig; Keiichi Inoue; Kunio Ihara; Hideki Kandori; Shin Takagi; Shigehiko Hayashi

Background: Light-driven proton pumps are utilized to control the neural activity. Results: We have succeeded to produce a blue-shifted proton pump. The rotation of the β-ionone ring contributes to the spectral shift. Conclusion: The designed color variant provides a tool that allows the control of neural activity by blue light. Significance: The knowledge will help to understand the color-tuning mechanism and can be utilized for optogenetics. Ion-transporting rhodopsins are widely utilized as optogenetic tools both for light-induced neural activation and silencing. The most studied representative is Bacteriorhodopsin (BR), which absorbs green/red light (∼570 nm) and functions as a proton pump. Upon photoexcitation, BR induces a hyperpolarization across the membrane, which, if incorporated into a nerve cell, results in its neural silencing. In this study, we show that several residues around the retinal chromophore, which are completely conserved among BR homologs from the archaea, are involved in the spectral tuning in a BR homolog (HwBR) and that the combination mutation causes a large spectral blue shift (λmax = 498 nm) while preserving the robust pumping activity. Quantum mechanics/molecular mechanics calculations revealed that, compared with the wild type, the β-ionone ring of the chromophore in the mutant is rotated ∼130° because of the lack of steric hindrance between the methyl groups of the retinal and the mutated residues, resulting in the breakage of the π conjugation system on the polyene chain of the retinal. By the same mutations, similar spectral blue shifts are also observed in another BR homolog, archearhodopsin-3 (also called Arch). The color variant of archearhodopsin-3 could be successfully expressed in the neural cells of Caenorhabditis elegans, and illumination with blue light (500 nm) led to the effective locomotory paralysis of the worms. Thus, we successfully produced a blue-shifted proton pump for neural silencing.


Nature Communications | 2015

Atomistic design of microbial opsin-based blue-shifted optogenetics tools

Hideaki E. Kato; Motoshi Kamiya; Seiya Sugo; Jumpei Ito; Reiya Taniguchi; Ayaka Orito; Kunio Hirata; Ayumu Inutsuka; Akihiro Yamanaka; Andrés D. Maturana; Ryuichiro Ishitani; Yuki Sudo; Shigehiko Hayashi; Osamu Nureki

Microbial opsins with a bound chromophore function as photosensitive ion transporters and have been employed in optogenetics for the optical control of neuronal activity. Molecular engineering has been utilized to create colour variants for the functional augmentation of optogenetics tools, but was limited by the complexity of the protein–chromophore interactions. Here we report the development of blue-shifted colour variants by rational design at atomic resolution, achieved through accurate hybrid molecular simulations, electrophysiology and X-ray crystallography. The molecular simulation models and the crystal structure reveal the precisely designed conformational changes of the chromophore induced by combinatory mutations that shrink its π-conjugated system which, together with electrostatic tuning, produce large blue shifts of the absorption spectra by maximally 100 nm, while maintaining photosensitive ion transport activities. The design principle we elaborate is applicable to other microbial opsins, and clarifies the underlying molecular mechanism of the blue-shifted action spectra of microbial opsins recently isolated from natural sources.


Journal of the American Chemical Society | 2015

Molecular Mechanism of Wide Photoabsorption Spectral Shifts of Color Variants of Human Cellular Retinol Binding Protein II

Cheng Cheng; Motoshi Kamiya; Yoshihiro Uchida; Shigehiko Hayashi

Color variants of human cellular retinol binding protein II (hCRBPII) created by protein engineering were recently shown to exhibit anomalously wide photoabsorption spectral shifts over ∼200 nm across the visible region. The remarkable phenomenon provides a unique opportunity to gain insight into the molecular basis of the color tuning of retinal binding proteins for understanding of color vision as well as for engineering of novel color variants of retinal binding photoreceptor proteins employed in optogenetics. Here, we report a theoretical investigation of the molecular mechanism underlying the anomalously wide spectral shifts of the color variants of hCRBPII. Computational modeling of the color variants with hybrid molecular simulations of free energy geometry optimization succeeded in reproducing the experimentally observed wide spectral shifts, and revealed that protein flexibility, through which the active site structure of the protein and bound water molecules is altered by remote mutations, plays a significant role in inducing the large spectral shifts.


PLOS ONE | 2015

Molecular Dynamics of Channelrhodopsin at the Early Stages of Channel Opening

Mizuki Takemoto; Hideaki E. Kato; Michio Koyama; Jumpei Ito; Motoshi Kamiya; Shigehiko Hayashi; Andrés D. Maturana; Karl Deisseroth; Ryuichiro Ishitani; Osamu Nureki

Channelrhodopsin (ChR) is a light-gated cation channel that responds to blue light. Since ChR can be readily expressed in specific neurons to precisely control their activities by light, it has become a powerful tool in neuroscience. Although the recently solved crystal structure of a chimeric ChR, C1C2, provided the structural basis for ChR, our understanding of the molecular mechanism of ChR still remains limited. Here we performed electrophysiological analyses and all-atom molecular dynamics (MD) simulations, to investigate the importance of the intracellular and central constrictions of the ion conducting pore observed in the crystal structure of C1C2. Our electrophysiological analysis revealed that two glutamate residues, Glu122 and Glu129, in the intracellular and central constrictions, respectively, should be deprotonated in the photocycle. The simulation results suggested that the deprotonation of Glu129 in the central constriction leads to ion leakage in the ground state, and implied that the protonation of Glu129 is important for preventing ion leakage in the ground state. Moreover, we modeled the 13-cis retinal bound; i.e., activated C1C2, and performed MD simulations to investigate the conformational changes in the early stage of the photocycle. Our simulations suggested that retinal photoisomerization induces the conformational change toward channel opening, including the movements of TM6, TM7 and TM2. These insights into the dynamics of the ground states and the early photocycle stages enhance our understanding of the channel function of ChR.


Annual Review of Physical Chemistry | 2017

QM/MM Geometry Optimization on Extensive Free-Energy Surfaces for Examination of Enzymatic Reactions and Design of Novel Functional Properties of Proteins

Shigehiko Hayashi; Yoshihiro Uchida; Taisuke Hasegawa; Masahiro Higashi; Takahiro Kosugi; Motoshi Kamiya

Many remarkable molecular functions of proteins use their characteristic global and slow conformational dynamics through coupling of local chemical states in reaction centers with global conformational changes of proteins. To theoretically examine the functional processes of proteins in atomic detail, a methodology of quantum mechanical/molecular mechanical (QM/MM) free-energy geometry optimization is introduced. In the methodology, a geometry optimization of a local reaction center is performed with a quantum mechanical calculation on a free-energy surface constructed with conformational samples of the surrounding protein environment obtained by a molecular dynamics simulation with a molecular mechanics force field. Geometry optimizations on extensive free-energy surfaces by a QM/MM reweighting free-energy self-consistent field method designed to be variationally consistent and computationally efficient have enabled examinations of the multiscale molecular coupling of local chemical states with global protein conformational changes in functional processes and analysis and design of protein mutants with novel functional properties.


Journal of Physical Chemistry B | 2017

Photoactivation Intermediates of a G-Protein Coupled Receptor Rhodopsin Investigated by a Hybrid Molecular Simulation

Motoshi Kamiya; Shigehiko Hayashi

Rhodopsin is a G-protein coupled receptor functioning as a photoreceptor for vision through photoactivation of a covalently bound ligand of a retinal protonated Schiff base chromophore. Despite the availability of structural information on the inactivated and activated forms of the receptor, the transition processes initiated by the photoabsorption have not been well understood. Here we theoretically examined the photoactivation processes by means of molecular dynamics (MD) simulations and ab initio quantum mechanical/molecular mechanical (QM/MM) free energy geometry optimizations which enabled accurate geometry determination of the ligand molecule in ample statistical conformational samples of the protein. Structures of the intermediate states of the activation process, blue-shifted intermediate and Lumi, as well as the dark state first generated by MD simulations and then refined by the QM/MM free energy geometry optimizations were characterized by large displacement of the β-ionone ring of retinal along with change in the hydrogen bond of the protonated Schiff base. The ab initio calculations of vibrational and electronic spectroscopic properties of those states well reproduced the experimental observations and successfully identified the molecular origins underlying the spectroscopic features. The structural evolution in the formation of the intermediates provides a molecular insight into the efficient activation processes of the receptor.


Biophysical Journal | 2018

An Atomistic Model of a Precursor State of Light-Induced Channel Opening of Channelrhodopsin

Cheng Cheng; Motoshi Kamiya; Mizuki Takemoto; Ryuichiro Ishitani; Osamu Nureki; Norio Yoshida; Shigehiko Hayashi

Channelrhodopsins (ChRs) are microbial light-gated ion channels with a retinal chromophore and are widely utilized in optogenetics to precisely control neuronal activity with light. Despite increasing understanding of their structures and photoactivation kinetics, the atomistic mechanism of light gating and ion conduction remains elusive. Here, we present an atomic structural model of a chimeric ChR in a precursor state of the channel opening determined by an accurate hybrid molecular simulation technique and a statistical theory of internal water distribution. The photoactivated structure features extensive tilt of the chromophore accompanied by redistribution of water molecules in its binding pocket, which is absent in previously known photoactivated structures of analogous photoreceptors, and widely agrees with structural and spectroscopic experimental evidence of ChRs. The atomistic model manifests a photoactivated ion-conduction pathway that is markedly different from a previously proposed one and successfully explains experimentally observed mutagenic effects on key channel properties.


Chemical Physics Letters | 2013

Structural and spectral characterizations of C1C2 channelrhodopsin and its mutants by molecular simulations

Motoshi Kamiya; Hideaki E. Kato; Ryuichiro Ishitani; Osamu Nureki; Shigehiko Hayashi

Collaboration


Dive into the Motoshi Kamiya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Iwao Ohmine

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge