Myong-Jae Kim
Samsung
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Myong-Jae Kim.
IEEE Journal of Solid-state Circuits | 1997
Tae-Sung Jung; Do-Chan Choi; Sung-Hee Cho; Myong-Jae Kim; Seung-Keun Lee; Byung-Soon Choi; Jin-Sun Yum; San-Hong Kim; Dong-Gi Lee; Jong-Chang Son; Myung-Sik Yong; Heung-Kwun Oh; Sung-Bu Jun; Woung-Moo Lee; Ejaz Haq; Kang-Deog Suh; Syed Ali; Hyung-Kyu Lim
A 3.3-V 16-Mb nonvolatile memory having operation virtually identical to DRAM with package pin compatibility has been developed. Read and write operations are fully DRAM compatible except for a longer RAS precharge time after write. Fast random access time of 63 ns with the NAND flash memory cell is achieved by using a hierarchical row decoder scheme and a unique folded bit-line architecture which also allows bit-by-bit program verify and inhibit operation. Fast page mode with a column address access time of 21 ns is achieved by sensing and latching 4 k cells simultaneously. To allow byte alterability, nonvolatile restore operation with self-contained erase is developed. Self-contained erase is word-line based, and increased cell disturb due to the word-line based erase is relaxed by adding a boosted bit-line scheme to a conventional self-boosting technique. The device is fabricated in a 0.5-/spl mu/m triple-well, p-substrate CMOS process using two-metal and three-poly interconnect layers. A resulting die size is 86.6 mm/sup 2/, and the effective cell size including the overhead of string select transistors is 2.0 /spl mu/m/sup 2/.
international solid-state circuits conference | 1997
Tae-Sung Jung; Do-Chan Choi; Sung-Hee Cho; Myong-Jae Kim; Seung-Keun Lee; Byung-Soon Choi; Jin-Sun Yum; San-Hong Kim; Dong-Gi Lee; Jong-Chang Son; Myung-Sik Yong; Heung-Kwun Oh; Sung-Bu Jun; Woung-Moo Lee; Ejaz Haq; Kang-Deog Suh; Hyung-Kyu Lim
A 3.3V 16Mb nonvolatile memory has read and write operations fully DRAM-compatible except a longer RAS precharge time after write. Most systems with high-performance processors use a shadow nonvolatile memory uploaded to a fast DRAM to obtain zero wait-state performance. The introduced nonvolatile virtual DRAM (NVDRAM) eliminates the need for this redundancy, achieving high performance while reducing power consumption. Fast random access time (tRAC) with a NAND flash memory cell is achieved by using a folded bit-line architecture, and DRAM comparable column address access time (tkA) is achieved by sensing and latching 4k cells simultaneously.
Archive | 1992
Myong-Jae Kim; Jei-Hwan You
Archive | 1999
Seong-Don Hwang; Myong-Jae Kim
Archive | 2007
Dong-Woo Sohn; Ji-Ho Cho; Myong-Jae Kim; Wonju Lee; Jong-Mun Suwon Choi
Archive | 2000
Hwi-Taek Chung; Yeon-Bae Chung; Myong-Jae Kim
Archive | 2008
Ji-Ho Cho; Myong-Jae Kim
Archive | 2004
Myong-Jae Kim; Ji-Ho Cho
Archive | 2002
Myong-Jae Kim
Archive | 2004
Dong-Ho Park; Myong-Jae Kim