Myung-Hoon Choi
Samsung
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Myung-Hoon Choi.
IEEE Journal of Solid-state Circuits | 2016
Woopyo Jeong; Jaewoo Im; Doohyun Kim; Sang-Wan Nam; Dongkyo Shim; Myung-Hoon Choi; Hyun-Jun Yoon; Dae-Han Kim; Y. Kim; Hyun Wook Park; Donghun Kwak; Sang-Won Park; Seok-Min Yoon; Wook-ghee Hahn; Jinho Ryu; Sang-Won Shim; Kyung-Tae Kang; Jeong-Don Ihm; In-Mo Kim; Doo-Sub Lee; Ji-Ho Cho; Moosung Kim; Jae-Hoon Jang; Sang-Won Hwang; Dae-Seok Byeon; Hyang-ja Yang; Kitae Park; Kye-Hyun Kyung; Jeong-Hyuk Choi
Most memory-chip manufacturers keep trying to supply cost-effective storage devices with high-performance characteristics such as shorter tPROG, lower power consumption and higher endurance. For many years, every effort has been made to shrink die size to lower cost and to improve performance. However, the previously used node-shrinking methodology is facing challenges due to increased cell-to-cell interference and patterning difficulties caused by decreasing dimension. To overcome these limitations, 3D-stacking technology has been developed. As a result of long and focused research in 3D stacking technology, we succeed in developing 128 Gb 3b/cell Vertical NAND with 32 stack WL layers for the first time, which is the smallest 128 Gb NAND Flash. The die size is 68.9 mm 2, program time is 700 us and I/O rate is 1 Gb/s.
symposium on vlsi circuits | 2012
Seung-Hwan Shin; Dongkyo Shim; Jaeyong Jeong; Oh-Suk Kwon; Sangyong Yoon; Myung-Hoon Choi; Tae-Young Kim; Hyun Wook Park; Hyun-Jun Yoon; Youngsun Song; Yoon-Hee Choi; Sang-Won Shim; Yang-Lo Ahn; Kitae Park; Jinman Han; Kye-Hyun Kyung; Young-Hyun Jun
We have developed a new 3-bit programming algorithm of high performance TLC(Triple-level-cell, 3-bit/cell) NAND flash memories for 20nm node and beyond. By using the proposed 3-bit algorithm based on reprogramming with SLC-to-TLC migration, performance and BER is improved by 50% and 68%, respectively, compared to conventional method. The proposed algorithm is successfully implemented in 21nm 64Gb TLC NAND flash product that provides 8MB/s write and 400MB/s read throughputs.
international solid-state circuits conference | 2011
Kitae Park; Oh-Suk Kwon; Sangyong Yoon; Myung-Hoon Choi; In-Mo Kim; Bo-Geun Kim; Minseok S. Kim; Yoon-Hee Choi; Seung-Hwan Shin; Youngson Song; Joo-Yong Park; Jae-Eun Lee; Changgyu Eun; Ho-Chul Lee; Hyeong-Jun Kim; J.Y. Lee; Jong-Young Kim; Tae-Min Kweon; Hyun-Jun Yoon; Tae-hyun Kim; Dongkyo Shim; Jong-Sun Sel; Ji-Yeon Shin; Pan-Suk Kwak; Jinman Han; Keon-Soo Kim; Sung-Soo Lee; Young-Ho Lim; Tae-Sung Jung
Recently, the demand for 3b/cell NAND flash has been increasing due to a strong market shift from 2b/cell to 3b/cell in NAND flash applications, such as USB disk drives, memory cards, MP3 players and digital still cameras that require cost-effective flash memory. To further expand the 3b/cell market, high write and read performances are essential [1]. Moreover, the device reliability requirements for these applications is a challenge due to continuing NAND scaling to sub-30nm pitches that increases cell-to-cell interference and disturbance. We present a high reliability 64Gb 3b/cell NAND flash with 7MB/s write rate and 200Mb/s asynchronous DDR interface in a 20m-node technology that helps to meet the expanding market demand and application requirement.
international solid-state circuits conference | 2015
Jaewoo Im; Woopyo Jeong; Doohyun Kim; Sang-Wan Nam; Dongkyo Shim; Myung-Hoon Choi; Hyun-Jun Yoon; Dae-Han Kim; Y. Kim; Hyun Wook Park; Donghun Kwak; Sang-Won Park; Seok-Min Yoon; Wook-ghee Hahn; Jinho Ryu; Sang-Won Shim; Kyung-Tae Kang; Sung-Ho Choi; Jeong-Don Ihm; Young-Sun Min; In-Mo Kim; Doo-Sub Lee; Ji-Ho Cho; Oh-Suk Kwon; Ji-Sang Lee; Moosung Kim; Sang-Hyun Joo; Jae-Hoon Jang; Sang-Won Hwang; Dae-Seok Byeon
Most memory-chip manufacturers keep trying to supply cost-effective storage devices with high-performance characteristics such as smaller tPROG, lower power consumption and longer endurance. For many years, every effort has been made to shrink die size to lower cost and to improve performance. However, the previously used node-shrinking methodology is facing challenges due to increased cell-to-cell interference and patterning difficulties caused by decreasing dimension. To overcome these limitations, 3D-stacking technology has been developed. As a result of long and focused research in 3D stacking technology, 128Gb 2b/cell device with 24 stack WL layers was announced in 2014 [1].
international integrated reliability workshop | 2015
Sangwoo Pae; Hyunchul Sagong; Changze Liu; Jungin Kim; Minjung Jin; Jong-In Shim; Yun-Hee Kim; Jae-moon Jo; Jiyoon Park; Myung-Hoon Choi; Sung-yoon Kim; Wooyeon Kim; Sung-wook Park; Sangmin Shin; Jung-Hoon Park
Reliability mechanisms associated with HK+MG transistors including latest FinFETs on 14nm technology node will be discussed along with circuit and product implications on reliabilty stresses and qualifications. Reliability efforts made at the transistor module level to circuit, IP blocks, and finally to a product level reliability will be discussed and limiting mechanisms and examples will be highlighted. As part of the product qual strategy, high-speed HTOL and Set level tests were leveraged to signficantly lower product dpms and seamless introduction of high volume manufacturing.
international solid-state circuits conference | 2014
Kitae Park; Jinman Han; Dae-Han Kim; Sang-Wan Nam; Kihwan Choi; Min-Su Kim; Pan-Suk Kwak; Doo-Sub Lee; Yoon-He Choi; Kyung-Min Kang; Myung-Hoon Choi; Donghun Kwak; Hyun-Wook Park; Sang-Won Shim; Hyun-Jun Yoon; Doohyun Kim; Sang-Won Park; Kangbin Lee; Kuihan Ko; Dongkyo Shim; Yang-Lo Ahn; Jeunghwan Park; Jinho Ryu; Dong-Hyun Kim; Kyungwa Yun; Joonsoo Kwon; Seunghoon Shin; Dong-Kyu Youn; Won-Tae Kim; Tae-hyun Kim
Archive | 2009
Jong-Young Kim; Myung-Hoon Choi
Archive | 2013
Hyun jun Yoon; Jaeyong Jeong; Myung-Hoon Choi; Kitae Park
Archive | 2013
Myung-Hoon Choi; Jaeyong Jeong; Kitae Park
Archive | 2013
Myung-Hoon Choi; Jaeyong Jeong; Kitae Park