Nadia Gennari
Merck & Co.
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nadia Gennari.
Journal of Virology | 2003
Licia Tomei; Sergio Altamura; Linda Bartholomew; Antonino Biroccio; Alessandra Ceccacci; Laura Pacini; Frank Narjes; Nadia Gennari; Monica Bisbocci; Ilario Incitti; Laura Orsatti; Steven Harper; Ian Stansfield; Michael Rowley; Raffaele De Francesco; Giovanni Migliaccio
ABSTRACT The RNA-dependent RNA polymerase of hepatitis C virus (HCV) is the catalytic subunit of the viral RNA amplification machinery and is an appealing target for the development of new therapeutic agents against HCV infection. Nonnucleoside inhibitors based on a benzimidazole scaffold have been recently reported. Compounds of this class are efficient inhibitors of HCV RNA replication in cell culture, thus providing attractive candidates for further development. Here we report the detailed analysis of the mechanism of action of selected benzimidazole inhibitors. Kinetic data and binding experiments indicated that these compounds act as allosteric inhibitors that block the activity of the polymerase prior to the elongation step. Escape mutations that confer resistance to these compounds map to proline 495, a residue located on the surface of the polymerase thumb domain and away from the active site. Substitution of this residue is sufficient to make the HCV enzyme and replicons resistant to the inhibitors. Interestingly, proline 495 lies in a recently identified noncatalytic GTP-binding site, thus validating it as a potential allosteric site that can be targeted by small-molecule inhibitors of HCV polymerase.
Bioorganic & Medicinal Chemistry Letters | 2009
Ian Stansfield; Caterina Ercolani; Angela Mackay; Immacolata Conte; Marco Pompei; Uwe Koch; Nadia Gennari; Claudio Giuliano; Michael Rowley; Frank Narjes
We report the evolutionary path from an open-chain series to conformationally constrained tetracyclic indole inhibitors of HCV NS5B-polymerase, where the C2 aromatic is tethered to the indole nitrogen. SAR studies led to the discovery of zwitterionic compounds endowed with good intrinsic enzyme affinity and cell-based potency, as well as superior DMPK profiles to their acyclic counterparts, and ultimately to the identification of a pre-clinical candidate with an excellent predicted human pharmacokinetic profile.
ChemMedChem | 2009
Jose Ignacio Martin Hernando; Jesus M. Ontoria; Savina Malancona; Barbara Attenni; Fabrizio Fiore; Fabio Bonelli; Uwe Koch; Stefania Di Marco; Stefania Colarusso; Simona Ponzi; Nadia Gennari; Sue Ellen Vignetti; Maria del Rosario Rico Ferreira; Jörg Habermann; Michael Rowley; Frank Narjes
Infections caused by the hepatitis C virus (HCV) are a significant world health problem for which novel therapies are in urgent demand. The NS5B polymerase of HCV is responsible for the replication of viral RNA and has been a prime target in the search for novel treatment options. We had discovered allosteric finger‐loop inhibitors based on a thieno[3,2‐b]pyrrole scaffold as an alternative to the related indole inhibitors. Optimization of the thienopyrrole series led to several N‐acetamides with submicromolar potency in the cell‐based replicon assay, but they lacked oral bioavailability in rats. By linking the N4‐position to the ortho‐position of the C5‐aryl group, we were able to identify the tetracyclic thienopyrrole 40, which displayed a favorable pharmacokinetic profile in rats and dogs and is equipotent with recently disclosed finger‐loop inhibitors based on an indole scaffold.
PLOS Neglected Tropical Diseases | 2015
Cristiana Lalli; Alessandra Guidi; Nadia Gennari; Sergio Altamura; Alberto Bresciani; Giovina Ruberti
Background Schistosomiasis, one of the world’s greatest neglected tropical diseases, is responsible for over 280,000 human deaths per annum. Praziquantel, developed in the 1970s, has high efficacy, excellent tolerability, few and transient side effects, simple administration procedures and competitive cost and it is currently the only recommended drug for treatment of human schistosomiasis. The use of a single drug to treat a population of over 200 million infected people appears particularly alarming when considering the threat of drug resistance. Quantitative, objective and validated methods for the screening of compound collections are needed for the discovery of novel anti-schistosomal drugs. Methodology/Principal Findings The present work describes the development and validation of a luminescence-based, medium-throughput assay for the detection of schistosomula viability through quantitation of ATP, a good indicator of metabolically active cells in culture. This validated method is demonstrated to be fast, highly reliable, sensitive and automation-friendly. The optimized assay was used for the screening of a small compound library on S. mansoni schistosomula, showing that the proposed method is suitable for a medium-throughput semi-automated screening. Interestingly, the pilot screening identified hits previously reported to have some anti-parasitic activity, further supporting the validity of this assay for anthelminthic drug discovery. Conclusions The developed and validated schistosomula viability luminescence-based assay was shown to be successful and suitable for the identification of novel compounds potentially exploitable in future schistosomiasis therapies.
ACS Medicinal Chemistry Letters | 2016
Jesus M. Ontoria; Giacomo Paonessa; Simona Ponzi; Federica Ferrigno; Emanuela Nizi; Ilaria Biancofiore; Savina Malancona; Rita Graziani; David Roberts; Paul Willis; Alberto Bresciani; Nadia Gennari; Ottavia Cecchetti; Edith Monteagudo; Maria Vittoria Orsale; Maria Veneziano; Annalise Di Marco; Antonella Cellucci; Ralph Laufer; Sergio Altamura; Vincenzo Summa; Steven Harper
The identification of a new series of P. falciparum growth inhibitors is described. Starting from a series of known human class I HDAC inhibitors a SAR exploration based on growth inhibitory activity in parasite and human cells-based assays led to the identification of compounds with submicromolar inhibition of P. falciparum growth (EC50 < 500 nM) and good selectivity over the activity of human HDAC in cells (up to >50-fold). Inhibition of parasital HDACs as the mechanism of action of this new class of selective growth inhibitors is supported by hyperacetylation studies.
PLOS Neglected Tropical Diseases | 2017
Alessandra Guidi; Cristiana Lalli; Roberto Gimmelli; Emanuela Nizi; Matteo Andreini; Nadia Gennari; Fulvio Saccoccia; Steven Harper; Alberto Bresciani; Giovina Ruberti
Schistosomiasis, one of the most prevalent neglected parasitic diseases affecting humans and animals, is caused by the Platyhelminthes of the genus Schistosoma. Schistosomes are the only trematodes to have evolved sexual dimorphism and the constant pairing with a male is essential for the sexual maturation of the female. Pairing is required for the full development of the two major female organs, ovary and vitellarium that are involved in the production of different cell types such as oocytes and vitellocytes, which represent the core elements of the whole egg machinery. Sexually mature females can produce a large number of eggs each day. Due to the importance of egg production for both life cycle and pathogenesis, there is significant interest in the search for new strategies and compounds not only affecting parasite viability but also egg production. Here we use a recently developed high-throughput organism-based approach, based on ATP quantitation in the schistosomula larval stage of Schistosoma mansoni for the screening of a large compound library, and describe a pharmacophore-based drug selection approach and phenotypic analyses to identify novel multi-stage schistosomicidal compounds. Interestingly, worm pairs treated with seven of the eight compounds identified show a phenotype characterized by defects in eggshell assemblage within the ootype and egg formation with degenerated oocytes and vitelline cells engulfment in the uterus and/or oviduct. We describe promising new molecules that not only impair the schistosomula larval stage but also impact juvenile and adult worm viability and egg formation and production in vitro.
Bioorganic & Medicinal Chemistry Letters | 2018
Federica Ferrigno; Ilaria Biancofiore; Savina Malancona; Simona Ponzi; Giacomo Paonessa; Rita Graziani; Alberto Bresciani; Nadia Gennari; Annalise Di Marco; Marcel Kaiser; Vincenzo Summa; Steven Harper; Jesus M. Ontoria
The identification of a new series of growth inhibitors of Trypanosoma brucei rhodesiense, causative agent of Human African Trypanosomiasis (HAT), is described. A selection of compounds from our in-house compound collection was screened in vitro against the parasite leading to the identification of compounds with nanomolar inhibition of T. brucei growth. Preliminary SAR on the hit compound led to the identification of compound 34 that shows low nanomolar parasite growth inhibition (T. brucei EC50 5 nM), is not cytotoxic (HeLa CC50 > 25,000 nM) and is selective over other parasites, such as Trypanosoma cruzi and Plasmodium falciparum (T. cruzi EC50 8120 nM, P. falciparum EC50 3624 nM).
Bioorganic & Medicinal Chemistry Letters | 2018
Emanuela Nizi; Alessio Sferrazza; Danilo Fabbrini; Valentina Nardi; Matteo Andreini; Rita Graziani; Nadia Gennari; Alberto Bresciani; Giacomo Paonessa; Steven Harper
Falcipain-2 (FP2) is an essential enzyme in the lifecycle of malaria parasites such as Plasmodium falciparum, and its inhibition is viewed as an attractive mechanism of action for new anti-malarial agents. Selective inhibition of FP2 with respect to a family of human cysteine proteases (that include cathepsins B, K, L and S) is likely to be required for the development of agents targeting FP2. Here we describe a series of P2-modified aminonitrile based inhibitors of FP2 that provide a clear strategy toward addressing selectivity for the P. falciparum and show that it can provide potent FP2 inhibitors with strong selectivity against all four of these human cathepsin isoforms.
Journal of Medicinal Chemistry | 2009
Cristina Gardelli; Barbara Attenni; Monica Donghi; Malte Meppen; Barbara Pacini; Steven Harper; Annalise Di Marco; Fabrizio Fiore; Claudio Giuliano; Vincenzo Pucci; Ralph Laufer; Nadia Gennari; Isabella Marcucci; Joseph F. Leone; David B. Olsen; Malcolm Maccoss; Michael Rowley; Frank Narjes
Bioorganic & Medicinal Chemistry Letters | 2004
Ian Stansfield; Salvatore Avolio; Stefania Colarusso; Nadia Gennari; Frank Narjes; Barbara Pacini; Simona Ponzi; Steven Harper